

Contato@sinprovs.com.br WWW.SINPROVS.COM.BR (83) 3322-3222

LOW NH₄⁺ ACCUMULATION IN LEAVES CONFERS TOLERANCE TO H M5 AMMONIUM CONCENTRATION IN UPLAND RICE PLANTS

BAIXA ACUMULAÇÃO DE NH₄⁺ NAS FOLHAS CONFERE TOLERÂNCIA A ALTA CONCENTRAÇÃO DE AMÔNIO EM PLANTAS DE ARROZ DE SEQUEIRO

Alencar, VTCB¹, Silva, AM¹; Lobo, AKM¹, Costa, A.H. S¹; Silveira, JAG¹

¹Department of Biochemistry and molecular biology, Federal University of Ceara, Avenida Humberto Monte, S/N, CP 6004, CEP 60440-970, Fortaleza, Ceará, Brazil. <u>vicentethiagro@gmail.com</u>; <u>markosvjj@gmail.com</u>; <u>karlamlobo@gmail.com</u>; <u>andriellyhsc@gmail.com</u>

The main nitrogen (N) sources uptake by plants are the inorganic forms, nitrate (NO₃⁻) and ammonium (NH₄⁺). Yet, few species, such as rice plants, can tolerate high NH₄⁺ concentrations, as they had to develop many mechanisms to cope with the excess of this ion in paddy soils. Despite some of these mechanisms had been described involving lowland rice plants, the NH₄⁺ tolerance in upland rice plants still poorly understood. Thus, the aim of this study was to verify if upland rice plants are tolerant to high NH₄⁺ concentrations. Thus, 35-day-old rice plants (Oryza sativa indica cv. BRS Primavera), were exposed to 0, 5, 10 and 15 mM NH₄⁺, as sole N source, over 21 days in greenhouse conditions. Control plants (0 mM NH₄⁺) were cultivated with 10 mM NO₃⁻, as sole N source. After 21 days, gas exchange parameters (CO₂ assimilation - P_N and stomatal conductance - g_s) and actual quantum efficiency of PSII (Φ PSII) did not change statically in any of treatments, but the 15 mM NH₄⁺-exposed plants had lower P_N and Φ PSII when compared to control plants. The concentration of NH₄⁺ in root tissues increased exponentially as the exogenous NH₄⁺ content increased, reaching 238% more in 15 mM NH₄⁺-treated plants than control ones. In leaf tissues, NH₄⁺ content had the same response observed in roots, however showed much lower proportion accumulating only 125% more in 15 mM NH₄⁺- than in 0 mM NH₄⁺-supplied plants. In summary, upland rice plants can tolerate exogenous high ammonium concentrations as reported to lowland rice plants. This tolerance is conferred by exclusion mechanisms to shoot tissues and NH₄⁺ compartmentalization in roots. However, further investigations are needed to better understand the mechanisms related to ammonium tolerance in upland in rice plants.

Keywords: CO₂ assimilation; Nitrogen source; *Oryza sativa*.

Acknowledgment: CNPq, CAPES e FUNCAP