CRESCIMENTO INICIAL DA CANA-DE-AÇÚCAR IRRIGADA COM ÁGUA RESIDUÁRIA NO SEMIÁRIDO PARAIBANO

INITIAL GROWTH OF SUGAR CANE IRRIGATED WITH RESIDUAL WATER IN SEMIÁRIDO PARAIBANO

Oliveira, OH¹; Pinto, MC²; Neto, AGA²; Souto, LS³; Dutra Filho, JA³

¹Mestrando em Horticultura Tropical, Universidade Federal de Campina Grande, CCTA, Pombal – PB, odairhonorato2020@gmail.com;

²Graduanda(o) em Agronomia, Universidade Federal de Campina Grande, CCTA, Pombal – PB, cabralpmariana@gmail.com; Neto199-199@hotmail.com;

³ Professor, Universidade Federal de Campina Grande, CCTA, Pombal – PB, lautersouto@yahoo.com.br joãodutrafilho7@gmail.com

RESUMO: A mais de quatro séculos a cana-de-açúcar vem sendo cultivada no território brasileiro, sendo considerada umas das culturas mais importantes do cenário agrícola atualmente. Objetivou-se com este trabalho avaliar o crescimento inicial de variedades de cana-de-açúcar irrigada com água residuária. O experimento foi realizado no Centro de Ciências e Tecnologia Agroalimentar, da Universidade Federal de Campina Grande, Campus de Pombal. O plantio foi feito em vasos com capacidade de 60 dm³ utilizando um rebolo de uma gema. O delineamento estatístico adotado foi o de blocos ao acaso em arranjo fatorial 4 x 2, correspondente a quatro tipos de água para irrigação (água de abastecimento, água de abastecimento com adição de nitrogênio, água residuária e água residuária com adição de nitrogênio), duas variedades de cana (RB92579 e C90-186) na presença e ausência de cobertura morta. As variáveis analisadas foram: número de folhas, comprimento das folhas, área foliar, altura do colmo, diâmetro médio do colmo, número de perfilhos. Os dados foram submetidos à análise de variância, as médias agrupadas pelo teste de Scott e Knott a 5%. Foram detectadas diferenças significativas entre as variedades submetidas à irrigação com água de abastecimento e água residuária. Verificou-se que as duas variedades tiveram comportamento influenciado pela complementação da irrigação com a água residuária. A RB92579 tiver um maior diâmetro do caule em função da água residuária.

PALAVRAS-CHAVE: Saccharum officinarum; Irrigação; Reuso.

INTRODUÇÃO:

Introduzida no Brasil a mais de quatro séculos a cana-de-açúcar (*saccharum officinarum* L.) é considerada uma das culturas agrícolas mais de maior importância na agricultura brasileira. A sua área cultivada na safra 2015/16 destinada à atividade sucroalcooleira foi de 8.995,5 mil hectares (CONAB, 2015), e é considerada uma atividade socioeconômica primordial no agronegócio. Este setor é o mais profissionalizado do agronegócio brasileiro, visto que o Brasil domina todo setor produtivo que vai desde o plantio até processamento da cana-de-açúcar, extraindo o máximo de aproveitamento da matéria prima.

Porém, nos últimos anos o seu cultivo tem passado por dificuldades na região Nordeste em virtude de um declínio na área de cultivo, principalmente nos estados de Alagoas, Pernambuco e Paraíba, maiores produtores da região reflexos de estresses

ambientais como déficit hídrico que os estados vêm sofrendo, além de falta de manejo la SINPKadequado. (CONAB, 2015).

Apesar de o Brasil ter a maior disponibilidade de águas superficiais do mundo, sendo 14% dessa e o equivalente ao deflúvio anual em aquíferos subterrâneos. Porém, o Nordeste brasileiro vive outro momento, segundo o Ministério do Meio Ambiente MMA (2016) o semiárido vem sofrendo uma crise hídrica devido ao baixo índice pluviométrico apresentado nos últimos anos, e vem se agravando a cada ano que se passa nessa região, especialmente nos estados do Ceará, Rio Grande do Norte, Paraíba e Pernambuco.

Sabendo-se que a agricultura consome cerca de 70% da água disponível, e que a região Nordeste vem sofrendo com o déficit hídrico nos últimos anos, é importante adoção de praticas que visem melhorias para cultivo da cana-de-açúcar, dentre as melhorias o uso de água residuária como complementação da irrigação, torna-se uma opção viável como relata Freitas et al. (2013), que avaliaram o efeito da água residuária tratada como fonte hídrica alternativa para irrigação em cana-de-açúcar e obtiveram resultados satisfatórios, além das qualidades físicas e químicas do solo que são obtidas através da adição da água residuária.

Em virtude dos fatos mencionados, objetivou-se com este trabalho avaliar o crescimento inicial de variedades de cana-de-açúcar utilizadas na geração de energia e produção de açúcar irrigada com água residuária.

METODOLOGIA:

O experimento foi realizado em campo aberto no período de fevereiro a maio de 2016, no Centro de Ciências e Tecnologia Agroalimentar, da Universidade Federal de Campina Grande, Campus Pombal, UFCG. O delineamento estatístico adotado foi o de blocos ao acaso, em arranjo fatorial 4 x 2 correspondente a quatro tipos de água para irrigação (água de abastecimento - AA, água de abastecimento com adição de nitrogênio – AAN, água residuária – AR e água residuária com adição de nitrogênio – ARN), duas variedades de cana (RB92579 e C90-186) com e sem cobertura morta. A água residuária utilizada foi obtida de pias, chuveiros e sanitários localizados no prédio central de aulas II da Universidade Federal de Campina Grande, campus de Pombal – PB, cujas características químicas foram determinadas pela LAMSA Laboratório de análises Minerais Solos e Água, UFPE obtendo-se as seguintes características, Água residuária: pH – 7,2; CE – 1,87; P – 3,50 mg L^{-1} ; K – 32,03 mg L^{-1} ; N – 29,02 mg L^{-1} ; $Na - 140,32 \text{ mg L}^{-1}$; $Ca - 80,39 \text{ mg L}^{-1}$; $Mg - 37,37 \text{ mg L}^{-1}$; $Cl - 261,27 \text{ mg L}^{-1}$; $CO_3 -$ Ausente; $HCO_3 - 443$ mg L⁻¹; RAS - 3,12 (mmol L⁻¹)^{0,5}. Água de abastecimento: pH -7,4; CE – 0,40; P – Ausente; K – 5,50 mg L^{-1} ; N – Ausente; Na – 33,65 mg L^{-1} ; Ca – 22 mg L⁻¹; Mg – 16,82 mg L⁻¹; Cl – 245,8 mg L⁻¹; CO_3 – Ausente; HCO_3 – 142 mg L⁻¹; RAS - 1,34 (mmol $L^{-1})^{0,5}$. O plantio foi realizado em vasos com capacidade de 60 dm³, com uma camada brita e logo após colocou o solo classificado como Neossolo Flúvico previamente misturado com 1L de esterco bovino por vasos, o plantio da cana-de-açúcar foi através da parte vegetativa, utilizando rebolos de uma gema. A adubação foi realizada de acordo com a análise química do solo com base no manual de

recomendação proposto por Cavalcanti et al. (2008). A irrigação foi determinada por limitation de drenagem, onde o volume de irrigação (Vi) a ser aplicado por unidade experimental foi obtido pela diferença do volume aplicado na irrigação anterior (Va) menos o volume drenado após a irrigação anterior (Va), menos a fração de lixiviação adotada 0,05 a equação adotada foi a seguinte: Vi = (Va - Vd / 1 - FL). A lâmina de lixiviação era aplicada a cada dois dias, para determinação da irrigação. A água drenada foi coletada através de recipientes coletores (garrafas tipo pet), que foi instalado em todas as unidades experimentais.

Foram avaliadas as seguintes variáveis aos 120 dias após o plantio (DAP): i) número de folhas (NF); ii) área foliar (AF) que foi determinada pela medição do comprimento da folha (CF) e largura da porção mediana da folha +3 (LF), conforme metodologia descrita por Hermann e Câmara (1999); iii) Altura do colmo (AC); iv) diâmetro médio do colmo (DMC); v) Número de perfilho (NPF), Para os parâmetros NF, LF, CF, AF, AC, DMC foram obtidos na cana mãe, que é o primeiro perfilho que nasce da touceira e para o parâmetro NPF foram obtido dos vasos.

As análises estatísticas foram realizadas com o auxílio dos Programas Genes, as médias foram agrupadas pelo teste de Scott & Knott em nível de 1% e 5% de probabilidade. (CRUZ, 2006).

RESULTADOS E DISCUSSÃO:

As características de crescimento foram influenciadas com base nos resultados do teste F (Tabela 1), apresentando diferenças significativas entre os tratamentos, (P<0,01) para os seguintes caracteres NF, CF, AF, DMC e AC nas variedades de cana-de-açúcar utilizadas. O que pode assegurar que a utilização da água residuária influência o crescimento inicial da cana-de-açúcar. Segundo Garcia et al. (2012) a utilização de água residuária em local de escassez hídrica ou água de baixa qualidade, torna-se uma alternativa viável para agricultura.

F.V.	G.L.	QUADRADOS MÉDIOS							
		NF	CF	AF	NPF	DMC	AC		
T	7	14,44**	1349,37**	4207,95**	0,0109 ^{ns}	0,0300**	13,88**		
C	1	8,62 ^{ns}	172,52 ^{ns}	1856,04 ^{ns}	0,0008 ^{ns}	0,0120*	2,53 ^{ns}		
TxC	7	16,76**	242,56 ^{ns}	3983,97**	$0,0084^{ns}$	0,0016 ^{ns}	2,14 ^{ns}		
Média		10,64	98,93	137,73	0,44	1,31	8,81		
C.V. (%)		18,23	13,84	17,00	21,52	3,04	15,45		

Tabela 1. Resumos dos resultados das análises das variâncias, número de folha (NF), comprimento da folha (CF), área foliar (AF), número de perfilho (NPF), diâmetro médio do colmo (DMC) e altura do colmo (AC), da cana-de-açúcar irrigada sobre diferentes tipos água aos 120DAP. Pombal – PB, 2016. ** e * Significativo a 1 e 5% de probabilidade respectivamente, pelo teste F. (ns), não significativo, pelo teste F; (T) tratamento, (C) condições, (T x C), tratamento x condições.

Em relação às condições de cultivo verificaram-se apenas efeitos significativos librados tipos de água (P<0,01) para a variável, diâmetro médio do (DMC) (P<0,05). Constata-se que os tipos de água para cultivo da cana-de-açúcar, bem como as condições de cultivo funcionam como ambientes contrastantes. O diâmetro médio do colmo é uma das características mais importante para fins de crescimento inicial, pois o mesmo irá determinar o conteúdo de caldo no colmo.

Houve significância da interação tratamento x condições de cultivo para os caracteres NF e AF (Tabela 1). Desse modo, infere-se que os tipos de água para irrigação influenciam na expressão dos caracteres avaliados nas variedades de cana-deaçúcar. Neste sentido Freitas et al. (2013) verificaram que os tipos de água influenciam de forma significativa nas características de produção na cana-de-açúcar.

Pelo teste de Scott e Knott (Tabela 2) aplicado (P<0,05), constata-se que para as variáveis NF, NPF, não houve a formação de grupos superiores. Esse resultado indica que a expressão desses caracteres independe do tipo de água utilizada na irrigação. Já para as variáveis LF, CF, AF, DMC, AC, constata-se a formação de grupos superiores.

Tabela 2. Resumo do teste Scott e Knott a 1% e 5%, para as variáveis, número de folha (NF), comprimento da folha (CF), área foliar (AF), número de colmos (NC), diâmetro médio do colmo (DMC) e altura do colmo (AC), avaliados na fase de crescimento inicial com os diferentes tipos de água para irrigação aos 120DAP. Pombal – PB, 2016.

Tratamento	NF	CF	AF	NPF	DMC	AF
RB – ARN	11,42 a	94,00 b	175,32 a	0,43 a	1,37 a	7,65 b
RB – AR	10,42 a	85,00 b	145,42 a	0,42 a	1,40 a	7,33 b
RB – AA	12,01 a	82,50 b	163,82 a	0,45 a	1,38 a	7,31 b
RB – AAN	7,88 a	82,00 b	103,63 b	0,40 a	1,36 a	7,62 b
C90 – ARN	12,45 a	120,00 a	151,20 a	0,52 a	1,25 b	9,28 a
C90 – AR	11,49 a	107,50 a	134,06 b	0,49 a	1,25 b	9,73 a
C90 – AA	10,40 a	106,66 a	126,21 b	0,41 a	1,25 b	10,40 a
C90 – AAN	9,01 a	113,83 a	102,15 b	0,40 a	1,23 b	11,13 a

Médias seguidas da mesma letra, nas colunas, pertencem ao mesmo grupo pelo teste de agrupamento de Scott e Knott, a 5% de probabilidade.

Para as variáveis: comprimento da folha (CF) e área foliar (AF) em ambas as variedades RB92579 e C90-186 e com água residuária foram obtidos maiores valores em relação água de abastecimento. O que pode este associado às quantidades de nutrientes presentes na água residuária principalmente o nitrogênio componente fundamental no processo fotossintético da cana-de-açúcar. De acordo com Fernandes et al. (2013) a cana-de-açúcar apresenta demandas significativas de nitrogênio para o seu desenvolvimento e seu processo fotossintético caracterizado como C4 que apresenta altas taxas de fotossíntese liquida. Pode-se observa que a água residuária supriu em parte as necessidades de nitrogênio para o desenvolvimento das variedades estudadas.

Em relação às variáveis números de colmos (NC), diâmetro médio do colmo (DMC) e altura do colmo (AC) os tratamentos com água residuária novamente se destacaram com os melhores resultados, havendo apenas a formação de grupos superiores para DMC e AC para as duas variedades estudadas (Tabela 2). A altura e o

diâmetro médio dos colmos são importantes indicadores no estudo do crescimento, ill SINPREMIO os colmos como principais funções a sustentação das folhas e das panículas, reprodução veces de condução da seiva bruta às folhas e a elaborada para e o armazenamento de açúcares (VALSECHI, 1983).

CONCLUSÕES: Em conjunto, os resultados mostram água residuária influenciando positivamente os caracteres biométricos da cana-de-açúcar e que pode ser utilizada como complementação no processo de irrigação na fase inicial do crescimento da cana-de-açúcar.

AGRADECIMENTOS: À RIDESA pelo fornecimento das variedades de cana-deaçúcar utilizadas no experimento. Ao CNPq e a UFCG pelo apoio financeiro e estrutura física para realização do experimento.

REFERÊNCIAS

CAVALCANTI, F.J.A. et al. **Recomendações de adubação para o Estado de Pernambuco.** 2ª Aproximação. Recife — Instituto Agronômico de Pernambuco — IPA, 212p. Il. 2008.

CONAB, Acompanhamento da safra brasileira – cana-de-açúcar – safra 2015/16. n. 3, v. 2, Brasília, p. 1-65. 2015.

CRUZ, C.D. Programa Genes: Estatística experimental e matrizes. **Editora UFV**, Viçosa, p. 285, 2006.

FREITAS, C.A.S. et al. Efluente doméstico tratado e reutilizado como fonte hídrica alternativa para a produção de cana-de-açúcar. **Revista Brasileira de Engenharia Agrícola e Ambiental.** v. 17, n. 7, p. 727-734, 2013.

GARCIA, G.O. et al. Propriedades químicas de um solo cultivado com duas forrageiras fertirrigadas com esgoto doméstico tratado. **Revista Brasileira de Ciências Agrárias**. v.7, p.737-742, 2012.

HERMANN, E.R.; CÂMARA, G.M.S. Um método simples para estimar a área foliar de cana-de-açúcar. **Revista da STAB**. Piracicaba, v.17, n.5, p.32-34, 1999.

MINISTÉRIO DO MEIO AMBIENTE, Disponível em: http://www.brasil.gov.br/meio-ambiente/2016/09/crise-hidrica-se-agrava-no-semiarido-brasileiro. Acesso em: 05 abr 2018.

VALSECHI, O.A. Pagamento de cana pelo teor de sacarose: O sistema implantado em São Paulo. Brasil Açucareiro, v.101, n.1/3, p.32-39, 1983.

