

HIDRODINÂMICA NA BAÍA DO FORDINHO NO RIO PARAGUAI, PANTANAL MATO-GROSSENSE

Helena Thais da Conceição Soares ¹

Anderson da Silva Leite 2

Rafaela Silva Neves³

Misael Ritela 4

Polielson Otil Da Silva ⁵

Vinicius de Souza Silva 6

Leila Nalis Paiva da Silva Andrade ⁷

INTRODUÇÃO

Os rios têm um papel fundamental na esculturação das paisagens e na formação de ecossistemas aquáticos ao longo de seu trajeto (Tavares, 1995). O estudo da hidrodinâmica é essencial para compreender os processos de circulação e transporte de sedimentos em ambientes aquáticos Santos (2018).

Silva (2017) enfatiza que a dinâmica de fluxo em rios e baías regula a distribuição de sedimentos e a formação de habitats, influenciando diretamente a biodiversidade local. A análise dos rios é primordial para avaliar a qualidade da água e o impacto das mudanças climáticas sobre os ecossistemas fluviais (Costa, 1998).

Oliveira e Pereira (2019) apontam que variações na vazão e na velocidade das correntes podem alterar significativamente a estrutura dos ecossistemas aquáticos, impactando a fauna e a flora. Nesse sentido, a complexidade hidrodinâmica das baías influencia diretamente a biodiversidade e a distribuição de espécies aquáticas dos rios (Almeida, 2020).

De acordo com Silva (2018), as baías são formadas por processos naturais de sedimentação e erosão que moldam a geografia costeira. As baías, conforme descrito por Pereira (2021), são formadas por processos naturais que envolvem a

¹Graduando pelo Curso de Geografia da Universidado Estado de Mato Grosso - UNEMAT,helena.thais@unemat.br; ²Graduando pelo Curso de Ciências Contábeis da Universidado Estado de Mato Grosso UNEMAT,anderson.leite@unemat.br;

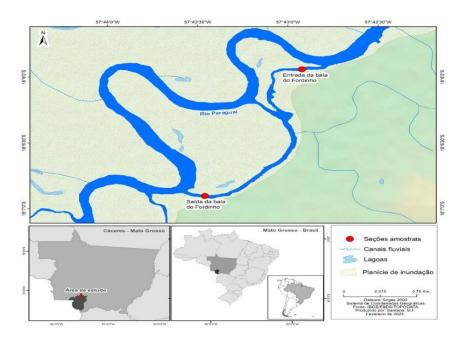
³Graduando pelo Curso de Geografia da Universidado Estado de Mato Grosso - UNEMAT,rafaela.neves@unemat.br ⁴Graduando pelo Curso de Geografia da Universidado Estado de Mato Grosso - UNEMAT,r.misael@unemat.br

⁵Graduando pelo Curso de Geografia da Universidado Estado de Mato Grosso - UNEMAT,polielson.silva@unemat.br

⁶ Graduando pelo Curso de Geografia da Universidado Estado de Mato Grosso - UNEMAT, vinicius. silval@unemat.br

⁷Professora orientadora, Doutora em Ciências: Ecologia e Recursos Naturais pela Universidade Federal de São Carlos - UFSCar, <u>leilaandrade@unemat.br</u>.

Conforme aponta Santos (2021), a hidrodinâmica das baías é crucial para a compreensão dos padrões de circulação e suas implicações ecológicas. No contexto da baía do Fordinho, localizada no rio Paraguai, essas variáveis adquirem uma importância especial, dada a sensibilidade a biodiversidade da região. Fernandes (1998) e Carvalho (2021) argumenta que entender esses processos é essencial para desenvolver estratégias eficazes de gestão e conservação ambiental.

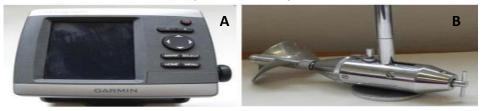

Assim, a pesquisa teve como objetivo analisar a hidrodinâmica na baía do Fordinho no rio Paraguai na cidade de Cáceres, no estado de Mato Grosso.

MATERIAIS E MÉTODOS

Localização da área de estudo

A área de estudo corresponde a baía do Fordinho, no rio Paraguai no estado de Mato Grosso entre as coordenadas geográficas 16° 05,9' 33"S "e 16° 06,9' 06" e 57°43,4' 95" a 57° 42,8' 43" W, a montante da cidade de Cáceres Mato Grosso (Figura 1).

Figura 1. Segmento do rio Paraguai e baia do Fordinho, Cáceres, Mato Grosso.

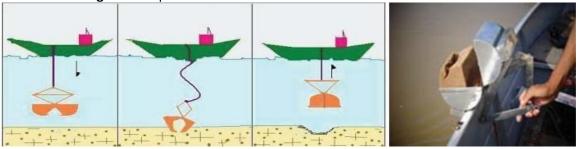


Procedimentos metodológicos

A pesquisa foi concluída em três etapas: trabalho de gabinete, campo e análise em laboratório. Durante a primeira etapa de gabinete, a revisão bibliográfica foi essencial para a construção do trabalho (Oliveira, 2010).

A segunda etapa, o campo foi realizado em duas seções: entrada e saída da baía Fordinho no período da cheia para a quantificação das variáveis hidrodinâmicas. Para tanto, foram obtidos dados referentes à largura/profundidade do canal, com o auxílio de ecobatímetro GPSmaps 420s GARMIN, a largura foi mensurada no *Google Earth*, à velocidade, com o molinete fluviométrico (Figura2).

Figura 2. Aparelhos utilizados em campo a) Sonar Garmin para determinação de largura e profundidade; b) Molinete fluviométrico para determinação de velocidade de fluxo.



Conforme propõe Carvalho (2008), para se estabelecer uma média da velocidade da correnteza de forma coerente, é necessário realizar medições da velocidade do fluxo em diferentes seções transversais ao canal, e em cada seção medir em diferentes verticais/profundidade. Nesse sentido, a velocidade do fluxo foi mensurada em três setores da seção transversal (margem esquerda, centro e margem direita). Os valores da área na seção transversal no nível seção molhada foram obtidos com a equação: A = L x P. Onde: A = área da seção; A = largura do canal; A = profundidade média. Para obter o cálculo da vazão, foi utilizada a equação proposta por Cunha (2009). A = vazão; A =0 onde: A =1 vazão; A =2 vazão; A =3 velocidade das águas; A =4 área.

Para a coleta do material de fundo, foi utilizada a draga "modelo de Van Veen" (amostrador de mandíbulas). O equipamento foi lançado travado e ao atingir o fundo do canal desarma, retendo assim, os sedimentos de fundo (Figura 3). O material coletado é armazenado em sacolas plásticas de 1 kg e etiquetados para posterior análise em laboratório.

Figura 3. Esquema de coleta: amostra de sedimento de fundo

Fonte: Franco (2007).

E na terceira etapa foram realizadas análises em laboratório. Para determinação do tamanho das partículas de sedimentos de fundo, foi adotado o método de peneiramento, que consiste em processo mecânico por meio do agitador Eletromagnético com uma sequência de peneiras padronizadas, por 30 minutos. O material retido em cada uma das peneiras foi pesado separadamente, determinando as frações areia grosso, areia média e areia fina (Embrapa, 1997).

RESULTADOS E DISCUSSÃO

A baía do Fordinho possui um perímetro de 5.680,22 m e tem sido objeto de estudo devido à sua dinâmica ambiental e às mudanças ao longo dos anos para o Pantanal mato-grossense (Figura 4).

Figura 4: Entrada da baia do Fordinho e suas vegetações

Fotos: Hurtado (2023)

A primeira seção corresponde a entrada da baía do Fordinho. A hidrodinâmica desempenha um papel fundamental na formação do ecossistema

desse local. A velocidade de fluxo de água registrou 1,77 m/s, largura de 43,26 m, a profundidade obtida foi de 7,18 m e uma área de 310,60 m², com vazão de 549,76 m³/s⁻¹(Tabela 1). Na margem direita sua vegetação é típica do pantanal. Esse ecossistema é caracterizado por grande diversidade de habitats, incluindo áreas de alagamento sazonal, campos inundáveis, matas ciliares e brejos. Na margem esquerda possui casas, ranchos, clubes de lazer.

Tabela 1. Variáveis hidráulicas das seções transversais na baia do Fordinho, no períodode cheia no mês de março de 2023.

Seção	Período	Prof. média (m)	Veloc. (m/s)	Área (m²)	Vazão (m³/s ⁻¹)
Ι	Cheia	7,18	1,77	310,60	549,76
II	Cheia	6,08	1,03	297,98	387,37

A perda de vegetação na região está intimamente ligada á expansão agrícola e a pecuária além do desmatamento ilegal que sempre vem ocorrendo. A vegetação ripária (margens dos rios) é crucial para a proteção contra a erosão. Com a retirada dessa vegetação, há um aumento na erosão das margens, o que pode levar ao assoreamento dos rios. Essas alterações têm consequências ecológicas significativas, como perda de habitat para espécies aquáticas e terrestres, e a degradação da qualidade da água, afetando tanto o meio ambiente quanto as comunidades humanas que dependem desses recursos naturais (Figura 5).

Figura 5. Perda de vegetação da baía do Fordinho.

Fotos: Soares (2023)

A segunda seção que é à saída da baía do Fordinho possui uma velocidade de fluxo de água 1,03 m/s largura de 49,01 m, profundidade de 6,08 m, área de 297,98 m², com vazão de 387,37 m³/s⁻1 (Tabela 1). As características da área também correspondem a primeira seção, com área típica de alagamento, na margem direita e ocupação pela população cacerense na margem esquerda.

A primeira seção possui maior concentração de sedimentos arenosos com predominância para a areia muito fina 35,53% e seguida da areia média. Pode-se quantificar 0,18% de silte + argila, menor quantidade registrada (Tabela 2).

Tabela 2. Composição granulométrica em porcentagem dos sedimentos de fundos, no períodode cheia

Seção	Local	Areia Muito Grossa	Areia Média	Areia Fina	Areia Muito Fina	Silte + Argila
I	Entrada	8,61	26,48	35,53	6,39	0,18
II	Saída	0,00	1,44	73,60	25,01	0,30

Fonte: Dados obtidos em laboratório sistematizados em gabinete.

Na segunda seção, também prevaleceu a composição de sedimentos arenosos em destaque a areia fina 73,60%, acompanhada da areia muito fina 25,01%. Pode-se verificar que a velocidade diminui que colabora com o depósito de partículas com tamanhos menores. Assim, a areia muito grossa pode se depositar mais perto da entrada, enquanto partículas menores continuam sendo transportadas e se depositam mais longe, na saída, nesse caso, 0,30% de silte + argila (Tabela 2).

Esses dados sugerem que há uma variação significativa na composição granulométrica dos sedimentos entre a entrada e a saída da baía, possivelmente devido a fatores hidrodinâmicos, fontes de sedimentos, ou processos de sedimentação específicos da área o que têm contribuído para uma melhor compreensão da hidrodinâmica na área, auxiliando os estudos sobre esse sistema fluvial para o Pantanal mato-grossense.

Ressalta-se que devem ser cobradas práticas sustentáveis de uso da terra para minimizar os impactos negativos sobre o sistema fluvial do Pantanal que abrange vários serviços ecossistêmicos aquáticos e terrestres.

CONSIDERAÇÕES FINAIS

A pesquisa realizada na baía do Fordinho, no rio Paraguai, demonstrou a complexa interação entre os elementos hidrodinâmicos e a influência das atividades

humanas na região. A análise dos dados coletados durante os períodos da cheia revelou que a dinâmica do fluxo de água e a distribuição de sedimentos, evidenciando a importância da conectividade para compreender a interação entre o canal principal e os ambientes fluviais.

Os resultados destacam que a hidrodinâmica desempenha um papel crucial na manutenção do ecossistema da baía, influenciando a circulação da água, a dinâmica dos nutrientes e a distribuição de organismos. Além disso, a pesquisa enfatiza a necessidade de políticas de conservação e gestão ambiental que considerem a conectividade dos sistemas fluviais e a sua preservação.

Palavras-chave: Pantanal, Rio Paraguai, Feições morfológicas, Vazão, Sedimentos.

AGRADECIMENTOS:

Os autores agradecem a Universidade do Estado de Mato Grosso. Ao Laboratório de Pesquisa e Estudos em Geomorfologia Fluvial UNEMAT/ Campus de Cáceres. Aos órgãos de fomento Faespe, Fapemat, CNPq e Capes pela concessão de bolsas de estudos e financiamento da pesquisa.

REFERÊNCIAS

ALMEIDA, Carlos José. Hidrodinâmica em regiões costeiras: estudo de caso em baías brasileiras. Curitiba: Editora Técnica, 2020.

COSTA, Roberto Lima. **Ecologia de rios e mudanças climáticas.** São Paulo: Editora Ambiental, 1998.

CARVALHO, Tânia Maria. **Técnicas de medição de vazão por meios convencionais e não convencionais.** Revista Brasileira de Geografia Física, v. 1, n. 1, p. 73-85, 2008.

CUNHA, Sérgio Buarque. **Geomorfologia fluvial**. In: CUNHA, Sérgio Buarque; GUERRA, Antonio José Teixeira. (Orgs.). Geomorfologia: exercícios, técnicas e aplicações. 3. ed. Rio de Janeiro: Editora Bertrand, 2009. p. 157-189.

CARVALHO, José Maria. **Análise da hidrodinâmica e sedimentologia em sistemas fluviais.** São Paulo: Editora Ambiental, 2021.

Embrapa. **Manual de métodos de análises de solos**. 2. ed. Rio de Janeiro: Embrapa Solos, 1997.

ESTAÇÃO Ecológica da ilha de Taiamã-MT. 2004. 173 f. **Tese (Doutorado em Geografia) - Centro de Ciências Matemáticas e da Natureza**. Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, 2004.

FERNANDES, Marcos Antônio. **Gestão e conservação dos rios: uma abordagemintegrada.** Rio de Janeiro: Editora Técnica, 1998.

FERNANDO, Marcos. Antônio. **Dinâmica de sedimentos em ambientes alagáveis**. Rio de Janeiro: Editora Fluvial, 2018.

FRANCO, Regina. Alves. **Métodos de análise de sedimentos de fundo em rios**. Belo Horizonte: Editora Científica, 2007.

OLIVEIRA, Luana. Souza.; Pereira, Antônio. Teixeira. **Gestão e conservação de ecossistemas fluviais**. Porto Alegre: Editora Acadêmica, 2019.

PEREIRA, Laura Helena. **Formação e dinâmica das baías costeiras.** 1. ed. Belo Horizonte: Editora Natural, 2021.

SILVA, Francisco Roberto. Impactos da hidrodinâmica nos ecossistemas aquáticos.

Curitiba: Editora Ecológica, 2017.

SANTOS, João Carlos. **Hidrodinâmica e transporte de sedimentos em sistemas aquáticos.** Recife: Editora Científica, 2018.

SILVA, Carlos de Souza. **Dinâmica das baías e processos sedimentares.** 2. ed. Rio de Janeiro: Editora Acadêmica, 2018.

TAVARES, Antônio Carlos. **Os rios e suas influências na paisagem**. 1. ed. Rio de Janeiro: Editora Geográfica, 1995.