

ANÁLISE ESPAÇO-TEMPORAL DA COBERTURA VEGETAL NA BACIA HIDROGRÁFICA DO RIO SERIDÓ NO SEMIÁRIDO BRASILEIRO

Alíbia Deysi Guedes da Silva¹ Sara Fernandes Flor de Souza²

RESUMO

A Caatinga, um ecossistema endêmico de vasta diversidade fitopaisagística situado na região Semiárida do Nordeste brasileiro, é uma das maiores florestas tropicais secas do mundo. Nela localiza-se a Bacia do Rio Seridó, uma unidade natural de planejamento que abrange parte do núcleo de desertificação do Seridó, no Rio Grande do Norte. Diante do exposto, o respectivo trabalho visa analisar a dinâmica espaço-temporal da cobertura vegetal da Bacia Hidrográfica do Rio Seridó no Semiárido brasileiro entre o período de 1984 e 2022 por meio da plataforma Google Earth Engine - GEE. As novas tecnologias incorporadas ao Sensoriamento Remoto são importantes ferramentas para o monitoramento ambiental e o GEE tem se consolidado por apresentar vantagens na análise de imagens de satélites. A pesquisa comparou a distribuição espacial da vegetação entre dois anos distintos através dos índices NDVI e SAVI, calculados no GEE em JavaScript a partir de imagens da coleção do Landsat-5 e Landsat-9 e de dados espaciais de precipitação do CHIRPS. O resultado da imagem de 1984 apresentou o total anual de precipitação de 915 mm, enquanto a imagem de 2022 foi de 1.080 mm. Os Índices de vegetação demonstraram uma significativa redução de 76% na cobertura vegetal em 2022, apesar da maior concentração de chuva. A vegetação densa correspondeu aos locais de altitude elevada, áreas de declividade e margens de rios. Além disso, ocorreu uma redução de 68% dos corpos hídricos. A plataforma GEE para o processamento de imagens orbitais se mostrou eficiente, devido a disponibilidade de ferramentas avançadas.

Palavras-chave: Google Earth Engine, CHIRPS, NDVI, JavaScript, Semiárido.

ABSTRACT

The Caatinga, an endemic ecosystem of vast plant and animal diversity located in the semi-arid region of northeastern Brazil, is one of the largest tropical dry forests in the world. It is home to the Seridó River Basin, a natural planning unit that covers part of the Seridó desertification core in Rio Grande do Norte. In view of the above, this study aims to analyze the spatio-temporal dynamics of the vegetation cover of the Seridó River Basin in the Brazilian semi-arid region between 1984 and 2022 using the Google Earth Engine - GEE platform. The new technologies incorporated into remote sensing are important tools for environmental monitoring and GEE has been consolidated for its advantages in

¹Mestranda em Geografia - GEOCERES - Universidade Federal do Rio Grande do Norte, <u>alibiadeysi.prof@gmail.com;</u>

² Professora Doutora - Departamento de Geografia - GEOCERES - Universidade Federal do Rio Grande do Norte, <u>sara.flor@ufrn.br;</u>

POS-GRADUAÇÃO E PESOURARIVZINGESATELIITE images. The research compared the spatial distribution of vegetation between two different years using the NDVI and SAVI indices, calculated in GEE in JavaScript from images from the Landsat-5 and Landsat-9 collection and spatial precipitation data from CHIRPS. The 1984 image showed a total annual rainfall of 915 mm, while the 2022 image showed 1,080 mm. The vegetation indices showed a significant 76% reduction in vegetation cover in 2022, despite the higher concentration of rainfall. The dense vegetation corresponded to high altitude sites, sloping areas and riverbanks. In addition, there was a 68% reduction in water bodies. The GEE platform for processing orbital images proved to be efficient, due to the availability of advanced tools.

Keywords: Google Earth Engine, CHIRPS, NDVI, JavaScript, Semiarid.

INTRODUÇÃO

A interconexão ambiental e socioeconômica é vista na Agenda 2030 da ONU (2015) por meio de uma ação global que promulga a proteção do meio ambiente a partir dos Objetivos de Desenvolvimento Sustentável (ODS) para garantir qualidade de vida, destacando a importância da cobertura vegetal, essencial para a manutenção da vida (Bertrand, 2004). No entanto, as mudanças na paisagem devido às atividades das sociedades, as quais substituem as florestas nativas, têm impactos significativos nas áreas naturais, como a Caatinga.

A Caatinga, um ecossistema único da região Semiárida do Nordeste brasileiro, é uma das maiores florestas tropicais sazonalmente seca do mundo (Silva *et al.*, 2017). Nela se encontra a Bacia Hidrográfica do Rio Seridó (BHRS), uma unidade natural de planejamento que abrange parte do núcleo de desertificação do Seridó em sua porção leste, conforme o MMA (2007).

A Bacia Hidrográfica do Rio Seridó, no seu processo histórico, já enfrentou desafios relacionados à pecuária, cotonicultura, agricultura de subsistência e mineração, que resultaram em degradação ambiental e alterações na paisagem ao longo dos anos. Essas mudanças afetaram a disponibilidade de água potável e a vegetação nativa (Rabelo; Araújo; Cavalcante, 2022). Desse modo, a detecção e monitoramento da vegetação de caatinga na BHRS é urgente visto a suma importância para a conservação da biodiversidade.

A utilização de Índices de Vegetação (IV) elaborados a partir de imagens de satélite constitui técnicas poderosas para o monitoramento das alterações no espaço geográfico, uma vez que ressaltam o comportamento espectral da vegetação, possibilitando distinguir as diferentes coberturas da terra (Moreira, 2005). A precipitação pluviométrica de uma região pode influenciar no comportamento espectral da vegetação e, por conseguinte, com sua interação entre a radiação nas regiões do vermelho e do infravermelho próximo do espectro eletromagnético.

POS-GRADUAÇÃO E PESQUISA EM GEORAFINOVAS tecnologias incorporadas ao Sensoriamento Remoto são importantes ferramentas para o avanço no monitoramento ambiental. A operacionalização de imagens ópticas em computação em nuvem vem otimizando a identificação e a extração de informações de alvos na superfície terrestre, superando as limitações de armazenamento e de processamento de dados devido à necessidade de computadores robustos. Nesse viés, o Google Earth Engine (GEE) tem se consolidado por apresentar vantagens na análise de imagens de satélites (Gorelick *et al.*,2017), sendo uma plataforma desenvolvida pela Google de processamento em nuvem que facilita a operação gratuita dos conjuntos de imagens orbitais globais. Os procedimentos são realizados em rede direta com a base de dados na nuvem, fazendo-se necessária apenas uma conexão com a internet (Dong *et al.*, 2016).

Face ao exposto, o trabalho visa analisar a dinâmica espaço-temporal da cobertura vegetal da Bacia Hidrográfica do Rio Seridó no Semiárido brasileiro entre o período de 1984 e 2022 por meio da plataforma Google Earth Engine. A pesquisa comparou a distribuição espacial da vegetação entre os dois anos por meio dos índices espectrais NDVI e SAVI, calculados no GEE em *JavaScript* a partir da coleção do Landsat-5 e Landsat-9 e dos dados espaciais de precipitação do CHIRPS.

METODOLOGIA

A Bacia Hidrográfica do Rio Seridó, com área de aproximadamente 10 mil km², está inserida no Seridó potiguar e no Seridó paraibano do Nordeste do Brasil (Figura 1). O principal curso, o Rio Seridó, nasce no município de Cubati/PB e deságua no rio Piranhas-Açu, no município de São Fernando/RN.

A BHRS caracteriza-se por irregularidades espaço-temporais das chuvas, altas temperaturas, sendo na classificação climática de Köppen do tipo Semiárido quente e seco (BSw'h'). Apresenta, principalmente, solos rasos, baixo Balanço Hídrico e vegetação de Caatinga, consequentemente, o seu potencial produtivo é reduzido naturalmente. Ademais, as ações antrópicas: exploração predatória de madeira e lenha, agropecuária de manejo inapropriado, bem como, queimadas e incêndios ilegais culminam para acelerar o processo de degradação (Accioly *et al.*, 2005).

Figura 1 - Localização da Bacia Hidrográfica do Rio Seridó.

Fonte: autoras (2023).

A análise do comportamento espaço-temporal da vegetação na região influenciada pelo rio Seridó foi obtida a partir das imagens orbitais coletadas pelos satélites Landsat-5 (TM) e Landsat-9 (OLI-2/TIRS-2), de resolução espacial de 30 metros e temporal de 16 dias. O préprocessamento dessas imagens ocorreu na plataforma de computação em nuvem GEE por meio de scripts em *JavaScript*, empregando métodos de filtragem para selecionar os melhores produtos, considerando critérios como data de aquisição e cobertura de nuvens (Figura 2).

Em seguida, foi criado um mosaico com a mediana dos pixels de cada recorte temporal, gerando um único produto representativo para os anos 1984 e 2022, avaliando a dinâmica da vegetação ao longo de um período de 38 anos. Para garantir a precisão das informações, as imagens em mosaico foram submetidas a uma correção para remover falhas e eliminar a cobertura de nuvens presentes.

A seleção da mediana resultou em uma única imagem a partir de toda a coleção anual de imagens, que foi usada para realizar cálculos espectrais. Foram aplicados o Índice de Vegetação por Diferença Normalizada (NDVI), proposto por Rouse et al. (1973), e o Índice de Vegetação Ajustado ao Solo (SAVI), desenvolvido por Huete (1988). O índice NDVI calculado pela função "normalizedDifference()" a partir da combinação de duas bandas (B5 e B4), e o cálculo do SAVI realizado pela aplicação da fórmula com as combinações de bandas "((NIR-RED)/(NIR+RED+0.5))*1.5". A constante "L" foi fixada em 0,5 devido às características de vegetação intermediária/esparsa na região em estudo.

Fonte: autoras (2023).

Aos produtos resultantes dos índices, aplicou-se uma máscara, cuja função é a "updateMask" para dividir a imagem em dois valores binários, desse modo, criando uma imagem somente com pixels acima (gte) de 0.7 para o NDVI e 0.6 para o SAVI e assim comparar a vegetação de maior atividade fotossintética entre os períodos analisados. Para obter o quanto representa em extensão em km², aplicou-se outra função chamada de "Image.pixelArea()". Os cálculos estatísticos dos índices e da precipitação, como a média, máxima e mínima foram obtidos pelo comando "reduceRegion()".

Os dados obtidos foram confrontados com a média anual da precipitação diária calculada do CHIPS Daily. Os produtos do CHIRPS são dados espaciais resultados da combinação da precipitação medida na superfície com a precipitação estimada dos satélites com resolução espacial de aproximadamente 5km (Cavalcante *et al.*, 2020).

Como última etapa, os resultados obtidos no GEE foram exportados para o Google Drive de mesma conta, pelo comando "Export.image.toDrive". Eles foram importados ao programa QGIS 3.28.6 para a produção dos mapas temáticos finais.

REFERENCIAL TEÓRICO

O Sensoriamento Remoto (SR) é uma geotecnologia que possibilita a obtenção de informações de grandes áreas da superfície terrestre através da captação remota da energia

pós-graduação e pesqu**refletidas pa**riemitida pela superfície pelos alvos terrestres (Florenzano, 2002; Lorenzetti, 2015).

Os produtos de Sensoriamento Remoto processados em computação em nuvem juntamente aos Índices Espectrais, permitem uma abordagem mais ágil e precisa na detecção de mudanças e padrões no uso da terra. Ao incorporar os dados e análises espaciais no planejamento ambiental, busca-se formular estratégias eficazes para garantir o consumo e produção responsáveis, ação contra a mudança global do clima, a conservação da biodiversidade e a segurança hídrica presentes nos Objetivos de Desenvolvimento Sustentável (ODS) da Agenda 2030 (ONU).

O GEE é uma plataforma de computação em nuvem (*cloud-based computing*) lançada pela Google em 2010 com acesso direto do navegador, projetada para lidar com *big data* de Sensoriamento Remoto de acesso aberto. Sua eficiência em executar rapidamente tarefas de processamento em grandes conjuntos de dados eliminou a necessidade de baixar ou instalar programas adicionais, superando as metodologias tradicionais (Gorelick *et al.*, 2017; Amani *et al.*, 2020), além de não serem onerosas financeiramente, uma vez que os processamentos de dados podem ser realizados de forma rápida, eficiente e atualizada, através de computadores de configurações menos robustas.

Embora a utilização do GEE exija habilidades em linguagens de programação, como JavaScript ou Python, a plataforma oferece uma interface intuitiva, conhecida como API (Application Programming Interface), que disponibiliza diversos scripts prontos em bibliotecas (Mutanga; Kumar, 2019). Além disso, a ferramenta está em constante atualização, incorporando técnicas de *machine learning* avançadas (algoritmos treinados). Essa particularidade permite aos pesquisadores aplicar algoritmos diretamente nos dados de SR disponíveis, explorando de forma eficaz padrões complexos nos dados geoespaciais.

Desse modo, torna-se viável aplicar em grandes volumes de dados as diversas técnicas de SR para Processamento Digital de Imagem (PDI), permitindo investigar as mudanças ambientais espaciais e temporais. Os Índices Espectrais, como exemplos dessas técnicas, utilizam os valores de reflectância capturados pelos sensores remotos e aplicam operações aritméticas entre bandas, ou seja, a combinação das respostas espectrais gera novas imagens com maior contraste entre seus elementos. Destacam-se os Índices de Vegetação que constituem técnicas para estimar as propriedades biofísicas da vegetação verde, tornando indicadores importantes para monitorar a condição da terra e identificar processos de degradação (Jensen, 2009).

O Índice de Vegetação da Diferença Normalizada (NDVI – *Normalized Difference Vegetation Index*), desenvolvido por Rouse *et al.* (1974), é uma métrica baseada na diferença de absorção das bandas de infravermelho próximo (NIR) e vermelho (RED) pela vegetação,

POS-GRADUAÇÃO E PESQU**RELACIONADA** seu estado fisiológico. A atividade fotossintética máxima absorve mais luz na faixa do vermelho e reflete mais na faixa do NIR, o oposto ocorre em áreas sem atividade fotossintética. Variando de -1 a 1, os valores mais elevados de NDVI indicativos de áreas com alta atividade fotossintética, possibilita a quantificação da biomassa vegetal, fornecendo uma indicação da saúde da vegetação e de sua na área de estudo.

O NDVI é amplamente utilizado na estimativa de biomassa, cobertura vegetal e detecção de mudanças na cobertura do solo a partir de respostas às condições pluviométricas. Sua simplicidade permite monitorar a vegetação em grande escala, tornando-o indispensável para estudos sazonais e anuais de degradação ambiental (Melo; Sales; Oliveira, 2015).

O Índice de Vegetação Ajustado para o Solo (SAVI – *Soil-Adjusted Vegetation Index*), proposto por Huete (1988), é uma melhoria do NDVI ao adicionar a constante L para minimizar os efeitos das variações de reflectância causadas pelos diferentes tipos de solo sobre a vegetação. Essa correção torna o SAVI mais adequado para áreas com solo exposto ou cobertura vegetal rasteira (Parise; Vettorazzi, 2005).

A precipitação e a radiação solar se categorizam por desempenhar papéis fundamentais para o crescimento das árvores, conforme os estudos de Ataide *et al.* (2011) e Menezes *et al.* (2011). A chuva contribui para o abastecimento de rios, recarrega os aquíferos, mantém a umidade do solo e é essencial para a saúde das plantas e sua regeneração natural. Nesta perspectiva, a relação entre a chuva e os índices espectrais de vegetação, como o NDVI e SAVI, é significativa. Os índices biofísicos são indicadores sensíveis à saúde e ao vigor das plantas.

Quando a chuva é escassa, a vegetação pode sofrer estresse hídrico, o que resulta em uma diminuição nos valores dos índices, apresentando sinais visíveis, como folhas murchas ou amareladas, o que se reflete nos índices espectrais. Por outro lado, quando a chuva é adequada, a vegetação tende a se desenvolver de forma mais saudável, resultando em valores mais altos nos índices espectrais (Lima *et al.*, 2013; Melo; Sales; Oliveira, 2015).

Dessa forma, a pesquisa utiliza os dados CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) desenvolvidos pelo United States Geological Survey (USGS) e pelo Climate Hazards Group at the University of California, Santa Barbara (UCSB). Os valores de precipitação do CHIRPS são derivados de satélites que combina dados de infravermelho e estações meteorológicas para fornecer estimativas de precipitação em escala global, com uma resolução espacial de ~5 km, possui dados de 1981 até os dias atuais e é disponibilizado em conjuntos de dados diários, em pêntadas e dados mensais (Funk *et al.*, 2015). Com essa abordagem, oferece a vantagem de fornecer dados de precipitação em áreas onde a

PÓS-GRADUAÇÃO E PESQU**disponibilida**de de estações meteorológicas é limitada, a exemplo dos estados do Rio Grande do Norte e Paraíba.

RESULTADOS E DISCUSSÃO

A dinamicidade é uma característica essencial da natureza, na qual as conexões entre os elementos bióticos e abióticos, juntamente com a influência da sociedade dão forma ao conceito de paisagem que pode se manifestar como algo natural ou cultural. A compreensão da paisagem não se limita apenas aos componentes físicos e biológicos do ambiente, também abrange a participação antrópica como agente transformador (Bertrand, 2004).

Os resultados estatísticos do CHIRPS revelaram que a bacia do Rio Seridó no ano de 2022 obteve uma média maior de 149 mm com relação ao ano de 1984. A tabela 1 apresenta todos os resultados encontrados. No ano mais recente, a amplitude pluviométrica também foi superior, atingindo 756 mm, enquanto em 1984 esse valor foi de 512 mm. O ano de 2022 foi um ano de anomalia positiva de chuva, causando aumento no volume de precipitação na região Nordeste do Brasil.

Ano	Mínima	Média	Máxima
1984	403 mm	648 mm	915 mm
2022	354 mm	797 mm	1.080 mm

Tabela 1 - Valores de precipitação no Rio Seridó em 1984 e 2022

Fonte: pesquisa (2023)

Os dados CHIRPS apontaram distribuição espacial da precipitação de maiores valores para o ano de 2022, concentradas na porção oeste e parte do sul, principalmente, em pontos de relevo elevado (Figura 3). As porções nordeste e norte da bacia apresentaram chuvas de menores valores. A área central configurou chuvas relativamente medianas. O ano de 1984 demonstrou maior presença espacial das menores chuvas em toda a porção leste. As maiores chuvas também se concentram no oeste da bacia, mas cobrindo menores porções, comparando-se com o ano de 2022.

Figura 3 – Distribuição espacial da precipitação na bacia do Rio Seridó.

Fonte: pesquisa (2023).

De acordo com Jensen (2011), com relação aos valores dos índices de vegetação NDVI e SAVI, os valores negativos atendem aos corpos hídricos, já os valores positivos próximos a zero constituem áreas descobertas ou com baixa cobertura vegetal, como areia, solos, rochas expostas e área urbana. Quanto mais se aproximar de 1, mais saudável será a vegetação.

Os valores estatísticos dos índices foram semelhantes entre os dois anos analisados (Tabela 2). O valor máximo do NDVI de 0,90 reduziu para 0,84 em 2022. O SAVI apresentou redução espacial da cobertura vegetal, de com média de 0,31 para 2022 (redução de 0,17 do NDVI) e o máximo de 0,72 para 1984.

NDVI					
Anos	Mínimo	Média	Máximo		
1984	-1	0,48	0,90		
2022	-0,51	0,49	0,84		
SAVI					

Tabela 2 –	Valores of	de NDVI	e SAVI em	1984 e 2022.

xv 🔊				
encontro nacional de pós-g raduação e pesquis 1 984 eografia	-0,35	0,31	0,72	
2022	-0,25	0,31	0,70	
		. (2022)		

Fonte: pesquisa (2023).

Os menores valores foram encontrados na porção oriental do ano de 2022, onde apresentaram rochas, solo exposto e/ou vegetação rasteira, ou esparsa. A leste da BHRS, a área de desertificação, também apresentou intervalo menor de SAVI no ano de 1984, entretanto, a porção sudeste obteve vários pixels de vegetação saudável (>0,7), não corroborando com a imagem de 2022. Essa redução espacial da cobertura vegetal sugere mudanças no uso da terra ao longo do tempo (Figura 4).

Figura 4 - Resultado do SAVI no Rio Seridó

Fonte: pesquisa (2023).

Tratando-se da vegetação de maior vigor, áreas de cores verdes representam vegetação densa, ocorrendo principalmente nos planaltos e maciços residuais, como nas porções sul e norte, esta caracterizada pela serra de Santana, são locais de menor acesso antrópico. Na Depressão Sertaneja, observa-se a vegetação verde em área de planície.

POS-GRADUAÇÃO E PESQUISA EM GOSFRESUltados do NDVI destacaram os maiores valores (>0,7) nos percursos dos rios (planícies de deposição) e nos locais de altitude e de declividade em ambos os períodos, os quais podem ultrapassar os 600 m, nos morros residuais e no planalto da Borborema, com destaque para a Serra de Santana ao norte.

Na Figura 5 o 1984 apresenta distribuição da vegetação próxima ao saudável, com área de cobertura, com extensão de aproximadamente 593 km². Enquanto para 2022 essa área foi reduzida para 142 km², ou seja, 76% menor. No último ano, essa cobertura foi totalmente removida na porção sudeste, no sertão paraibano, principalmente nos municípios de Seridó e Cubati.

Figura 5 – Máscara de valores de NDVI acima de 0,7.

Fonte: pesquisa (2023).

Os dados da média dos índices foram semelhantes em ambos (~0,48 NDVI e ~0,31 SAVI), entretanto, nota-se que o volume disponível dos corpos hídricos foi reduzido. Em 1984 a extensão territorial dos valores negativos do NDVI era de 87,4 km², e passou para 28,3 km² em 2022, ou seja, reduziu aproximadamente 68% da extensão dos corpos hídricos na BHRS. A Figura 6 evidencia as águas em cor avermelhada.

Fonte: pesquisa (2023).

Esses resultados são importantes para observar que, embora o volume de chuva tenha sido maior no período recente estudado, em 38 anos as práticas de manejo e uso da terra contribuíram para alterações significativas na bacia do rio Seridó. Segundo Rabelo, Araújo e Cavalcante (2022), o Seridó Potiguar e o Paraibano foram marcados por uma cultura do gado-algodão a partir do desenvolvimento da pecuária extensiva desde o século XX. O aumento de áreas de solo desnudo e vegetação esparsa podem acarretar diversos problemas que contribuem para agravar o processo de erosão e desertificação dos solos. A vegetação é uma barreira natural na proteção do solo e reduz as perdas de materiais. A compreensão desses impactos é essencial para orientar práticas de manejo sustentável e estratégias de conservação visando a preservação da saúde dos solos e do ecossistema.

Os resultados encontrados nesta pesquisa corroboram com trabalhos que utilizam os índices espectrais como parâmetros para análise e monitoramento da vegetação em ambiente semiárido, relacionando-os com a variação da pluviometria. Um estudo concluiu que os índices de vegetação são indicadores adequados para detectar alterações ambientais, sendo o SAVI o

PÓS-GRADUAÇÃO E PESQUIDIAIS adequado para a dinâmica da Caatinga em Arcoverde/PE (Silva *et al.*, 2019). Francisco *et al.* (2014) também fizeram uso de geotecnologias e índices de vegetação para estimar a biomassa da Caatinga e identificaram mais de 50% em processo de degradação no município de Sumé/PB.

CONSIDERAÇÕES FINAIS

Neste estudo foi utilizada a computação em nuvem como alternativa para otimizar os desafios enfrentados ao trabalhar com Sensoriamento Remoto para áreas extensas. A plataforma Google Earth Engine (GEE) para o processamento de imagens orbitais se mostrou como uma ferramenta de grande auxílio, uma vez que dispõe de ferramentas de análise avançadas que facilitam a extração de informações relevantes. Embora seja necessário utilizar uma linguagem de programação, como o JavaScript, o GEE dispõe de grande acervo de scripts prontos para aplicação, a exemplo de aplicação de máscara de nuvem e remoção de sombras e o cálculo do NDVI. Ademais, disponibiliza valores de precipitação para a área de interesse a partir das informações de satélites e observações em estações meteorológicas.

As vantagens da ferramenta proporcionam estudos e pesquisas em grandes áreas, como a Bacia Hidrográfica do Rio Seridó, pois o acesso às imagens é em tempo quase real e não exige o download das cenas. O método convencional de baixar os arquivos grandes, o préprocessamento e posterior cálculo dos índices são procedimentos que demandam elevado armazenamento, sistema de hardware robusto e elevado tempo de processamento.

Os resultados desta pesquisa na bacia hidrográfica do Rio Seridó destacam uma transformação significativa ao longo de 38 anos, evidenciando a complexa interação entre fatores naturais e a influência humana. Embora tenha ocorrido aumento na média de precipitação em 2022, a análise dos índices de vegetação NDVI e SAVI revela uma redução espacial da cobertura vegetal e dos corpos hídricos. Essa perda, na parte oriental, principalmente na porção sudeste, sugere mudanças substanciais na vegetação e uso da terra,

A compreensão desses resultados ressalta a importância de estratégias de manejo sustentável, considerando que práticas antrópicas, como agropecuária e mineração, contribuíram significativamente para alterações na bacia do rio Seridó ao longo do tempo, enfatizando a necessidade de conservação da Caatinga

REFERÊNCIAS

POS-GRADUAÇÃO E PESQUAREA LEDENTIL.J.O.; GARCON, E.A.M.; BARROS, M.R.O.; & BOTELHO, F. Avaliação de alvos em áreas sob desertificação no semiárido paraibano com base nos sensores Hyperion e LANDSAT7 ETM+. In: Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, p. 347-353, 2005.

AMANI, M. et al. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. **IEEE journal of selected topics in applied earth observations and remote sensing**, v. 13, p. 5326–5350, 2020.

ATAIDE, G. M.; CASTRO, R. V. O.; CRREIA, C. G.; CASTRO, A. F. M. N.; SANTANA, R. C. Cobertura retrátil no crescimento de mudas clonais de eucalipto. **Revista Ciência** Agrônomica., v. 42, n. 3, p. 750-757, 2011.

BERTRAND, G. Paisagem e Geografia Física global: esboço metodológico. RA'EGA, Curitiba, nº 8, p. 141 – 152, 2004.

CAVALCANTE, R. B. L., Ferreira, D. B. S., Pontes, P. R. M., Tedeschi, R. G., Costa, C. P. W., Souza, E. B., 2020. Evaluation of extreme rainfall índices from CHIRPS precipitation estimates over the Brazilian Amazonia. **Atmospheric Research**, 238, 1-12. Curitiba, nº 8, p. 141 – 152, 2004.

DONG, J.; XIAO, X.; MENARGUEZ, M.A.; ZHANG, G.; QIN, Y.; THAU, D.; BIRADAR, C.; MOORE, B., Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. **Remote Sensing Environment**, 185, p. 142-154, 2016.

FLORENZANO, T. G. Imagens de satelite para estudos ambientais. Oficina de textos, 2002.

FRANCISCO, P. R. M.; RIBEIRO, G. DO. N.; MORAES NETO, J. M. DE; ARAGÃO, K. P. Avaliação da degradação da caatinga do município de Sumé-PB estimado pelo Volume de Biomassa da Vegetação Lenhosa. **Revista Brasileira de Geografia Física**, v.7, n.1, p.117-129, 2014.

FUNK, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. **Scientific Data**, v. 2, n. 1, dez. 2015. <u>https://doi.org/10.1038/sdata.2015.66</u>

GORELICK, N.; HANCHER, M.; DIXON, M.; ILYUSHHCHENKO, S.; THAU, D.; MOORE, R. Google Earth Engine: Planetary- scale geospatial analysis for everyone. **Remote Sensing of Environment** (2016), http://dx.doi.org/10.1016/j.rse.2017.06.031

HUETE, Alfredo R. A soil-adjusted vegetation index (SAVI). Remote sensing of environment, v. 25, n. 3, p. 295-309, 1988.

JENSEN, J. R. **Sensoriamento Remoto do Ambiente**: uma perspectiva em Recursos Terrestres. Tradução de J. C. N. Epiphanio. São José dos Campos, SP: Parênteses, 2009. 598 p. (Prentice Hall Series in Geographic Information Science) Tradução de: Remote Sensing of the environment: an earth resource perspective.

POS-GRADUAÇÃO E PESQUEA MIAE GRACIA; SILVA, M. L. N.; CURI, N.; SILVA, M. A.; OLIVEIRA, A. H.; AVANZI, J. C.; UMMUS, M. E. Avaliação da cobertura vegetal pelo índice de vegetação por diferença normalizada (IVDN). Revista Ambiente & Água – An Interdisciplinary Journal of Applied Science, v. 8, n. 2, 2013.

LORENZZETTI, J. A. Princípios físicos de sensoriamento remoto. São Paulo: Blucher, 2015.

MENEZES, S. J. M. C.; SEIYAMA, G. C.; SOARES, V. P.; GLERIANI, J. M; ANDRADE, R. G. Estimativa dos componentes do balanço de energia e da evapotranspiração em plantios de eucalipto utilizando o algoritmo sebal e imagem landsat 5 – TM. **Árvore**, v. 35, n. 3, 2011.

MOREIRA, M. A. **Fundamentos do sensoriamento remoto e metodologias de aplicação**. 3.ed. Viçosa: UFV, 2005. 320p.

MUTANGA, O.; KUMAR, L. Google Earth Engine applications. **Remote sensing**, v. 11, n. 5, p. 591, 2019.

PARISE, F. J. O.; VETTORAZZI, C. A. Análise de dados de produção em um pomar jovem de laranjeiras Hamlin: I. Relações com a resposta espectral. **Revista Brasileira Fruticultura**. Jaboticabal, v. 27, n. 1, p. 43-47, 2005.

RABELO, D. R.; ARAÚJO, J. C. DE; CAVALCANTE, A. A. UTILIZAÇÃO DOS PRODUTOS DO SENSORIAMENTO REMOTO PARA DELIMITAÇÃO DO USO E COBERTURA DA PAISAGEM NA BACIA HIDROGRÁFICA DO RIO SERIDÓ. **Journal of Hyperspectral Remote Sensing**, v. 12, n. 2, p. 56, 25 maio 2022.

ROUSE, J. W.; HAAS, R. H.; SCHELL, J. A.; DEERING, D. W. Monitoring vegetation systems in the great plains with ERTS. In: EARTH RESOURCES TECHNOLOGY SATELLITE-1 SYMPOSIUM, 3., 1973, Washington. **Proceedings...** Washington, 1973. p. 309-317.

SILVA, J. M. C., BARBOSA, L. C. F., 2017. Impact of Human Activities on the Caatinga. In: SILVA, J. M. C.; LEAL, I. R.; TABARELLI, M. **Caatinga**: the Largest Tropical Dry Forest Region in South America. Cham, Switzerland: Springer Publishing International, 359-368. Disponível: 10.1007/978-3-319-68339-3_13. Acesso: 02 mai. 2023.

SILVA, C. V. S. et al. MONITORAMENTO DA COBERTURA VEGETAL POR SENSORIAMENTO REMOTO NO SEMIÁRIDO BRASILEIRO ATRAVÉS DE ÍNDICES DE VEGETAÇÃO. **Nativa**, v. 7, n. 6, p. 708, 11 nov. 2019.