

ECOLOGIA TRÓFICA DE *Melipona mandacaia* (Hymenoptera, Apidae), UMA ABELHA ENDÊMICA DO SEMIÁRIDO.

Patricia Oliveira-Rebouças (1); Poliana Duarte (2); Thiago Francisco de Souza Carneiro-Neto (1); Gleydson Brenno dos Santos Silva (1); Kátia M. Medeiros de Siqueira (1)

¹Departamento de Tecnologia e Ciências Sociais, Campus III, Universidade do Estado da Bahia. e-mail:preboucas@uneb.br ²Universidade Federal do Ceará, Departamento de Agronomia

Introdução

A abelha mandaçaia (*Melipona mandacaia* Smith, 1863) tem sua distribuição restrita ao bioma Caatinga, sendo encontrada ao longo do Rio São Francisco, nos estados estados da Bahia, Ceará, Paraíba Pernambuco e Piauí (Batalha-Filho et al., 2011). É uma das mais conhecidas da região nordeste do Brasil, sendo generalista, endêmica, e pouco estudada, possivelmente devido a sua região de ocorrência (Waldschmidt, 2002; Nunes, 2008).

As abelhas desse bioma desempenham um papel importante na polinização de plantas nativas e cultivadas, o que contribui para a formação de frutos mais robustos e de melhor qualidade para o mercado produtor (Siqueira, 2011). A flora nativa da Caatinga é a principal fonte de recursos alimentares às populações dessa espécie de abelha eussociais, quando as plantas dos pomares não estão floridas. Todavia, o conhecimento da fauna de abelhas desse bioma e os recursos utilizados ainda são bastante escassos, apesar do mesmo ser rico em espécies e endemismos (Carneiro-Neto et al., 2017).

A simplificação das paisagens naturais, em decorrência do intensivo uso do solo, vem levando a modificações na estrutura da comunidade dos polinizadores (Carneiro-Neto et al., 2017), e o intenso desmatamento da Caatinga vem trazendo consequências danosas para as abelhas Mandaçaia. (Batata-Filho et al., 2011).

Os objetivos desse estudo foram (i) conhecer as plantas visitadas por *Melipona mandacaia* para o forrageamento de recursos em uma área experimental urbana por dois métodos e (ii) agregar informações para a manutenção e preservação destas abelhas no semiárido.

Metodologia

Área experimental

O estudo foi realizado na área do Departamento de Tecnologia e Ciências Sociais – DTCS do Campus III – UNEB em Juazeiro-Bahia (09°25'43.6"S, 40°32'14"W, 384m). O

clima da região, segundo a classificação de Köppen, é BSwh' quente seco, semiárido com precipitação pluviométrica média anual de 542 mm, com as chuvas concentradas no período de outubro a abril (EMBRAPA, 2016).

Amostragem das abelhas

As coletas foram realizadas no horário de 7:00 às 16:00h, no período de janeiro/2012 a janeiro/2013. As abelhas foram capturadas, segundo a metodologia de Sakagami et al. (1967), por dois coletores que percorriam trilhas independetes e coletavam as abelhas utilizando redes entomológicas, em seguida as abelhas foram montadas e identificadas no laboratório de Entomologia do DTCS/UNEB..

Análise polínica

A coleta do pólen foi feita nas caixas de Mandaçaia, a cada 15 dias, entre outubro/2014 a setembro/2015. Os grãos de pólen foram coletados diretamente dos potes de armazenamento em três colônias de *M. mandacaia*, os mesmos encontravam-se abertos, indicando a sua utilização recente. Foram analisadas um total de 24 amostras.

Para cada amostra foram preparadas três lâminas em gelatina glicerinada de Kisser, sendo uma corada com fucsina, seguindo o método de Maurizio e Louveaux (1967), sem acetólise. No mesmo período de amostragem, foram fotografadas para posterior identificação as plantas em floração, sendo coletadas em transectos de até 500 m a partir do meliponário. Foram confeccionadas lâminas de referência com o pólen das anteras coletadas, utilizando a mesma metodologia já descrita.

A identificação dos tipos polínicos foi realizada em microscópio óptico Zeiss Primo Star com objetiva de 40x, comparando com o laminário de referência, catálogos polínicos e literatura especializada. Para a análise quantitativa foram contabilizados no mínimo 1000 grãos de pólen por amostra.

Análise de dados

A Curva do Coletor foi construída através da acumulação do número de tipos polínicos coletados pelas operárias e estocado nos potes de pólen de seus ninhos durante o período desse estudo. Para estimar a riqueza total dos tipos polínicos que ocorreram na área de estudo, utilizou-se Colwell & Coddington (1994). Além disso, para determinar a suficiência amostral das fontes tróficas de *M. mandacaia*, utilizou-se os estimadores de riqueza Chao 2, Jacknife 1 e Bootstrap, randomizados em 100 vezes calculados pelo programa EstimateS 9.1.0 (Colwell, 2013).

Resultados e discussão

De acordo com a amostragem realizada pelo método de Sakagami foram registradas visitas de *M. mandacaia* em quatro espécies vegetais. Todas as plantas levantadas por esse método forneciam pólén e néctar (Tabela 1), com excessão da *Chamaecrista hispidula* (Vahl) H.S.Irwin & Barneby a qual o pólen é o único recurso floral disponibilizado em anteras poricidas, que restringem o acesso desse recurso apenas para abelhas que realizam a "buzzpolination" ou capacidade de vibrar as anteras. Do total de abelhas coletadas nesse estudo, 86,36% dos indivíduos foram registrados em flores de *C. hispidula*.

Tabela 1. Espécies visitadas por *Melipona mandacaia* pelo método Sakagami, Campus III (UNEB), Juazeiro(BA), entre janeiro/2012 a janeiro/2013.

Espécie Vegetal	Tipo de Recurso Floral Coletado	% de abelhas
Chamaecrista hispidula (Vahl) H.S.Irwin & Barneby (Fabaceae- Caesalpinioideae)	Polén	86,36
Rhaphiodon echinus Schauer (Fabaceae- Papilinioideae)	Pólen e Néctar	4,55
Richardia grandiflora (Cham. & Schltdl.) Steud.(Rubiaceae)	Polén e Néctar	4,55
Turnera ulmifolia L. (Malvacea)	Pólen e Néctar	4,55

Através da amostragem indireta, utilizando a análise do pólen armazenado, registrouse 39 tipos polínicos (Tabela 2). As abelhas coletaram mais pólen na família Fabaceae (16 tipos polínicos) distribuídos em três subfamílias: Caesalpinioideae (n=4), Mimosoideae (n=11) e Papilinioideae (n=1). Dentre os tipos polínicos registrados os mais frequentes foram *Leucaena* sp., *Mimosa scrabella* e *Melochia* sp.

Tabela 2. Frequência de tipos polínicos registrados em amostras de potes de pólen de ninhos de *Melipona mandacaia*, Campus III (UNEB), Juazeiro, Bahia, Brasil, entre outubro/2014 a setembro/2015 (Destaque para os tipos polínicos dominantes - frequência > 2,56%).

Tipos polínicos	%
Anacardiaceae	, •
Anacardium ocidentalle	0,51
Tipo Schinus	0,03
Spondias tuberosa	0,27
Arecaceae	0,27
Tipo Arecaceae	0,07
Asteraceae	0,07
Bidens sp.	0,53
Begoniaceae	0,55
Begonia sp.	0,01
Bignoniaceae	0,01
Tecoma sp.	0,01
Convolvulaceae	0,01
Merremia sp.	0,07
Cucurbitaceae	0,07
Momordica charantia	0,27
Euphorbiaceae	0,27
=	0,08
Tipo Euphorbiaceae <i>Croton</i> sp.	0,08
Ricinus comunnis	0,04
Fabaceae-Caesalpinioideae	0,04
	0,33
Cassia fistula Chamaecrista sp.	0,95
•	0,93
Libidia férrea Tipo Senna	,
Fabaeae-Mimosoideae	0,75
Anadenanthera sp.	0.57
	0,57 0,06
Desmanthus sp.	,
Leucaena sp.	35,82 5,73
Mimosa caesalpiniifolia	1,03
Mimosa ophthalmocentra	0,04
Piptadenia sp. Mimosa misera	2,78
Mimosa misera Mimosa scrabella	15,66
Mimosa sp.	3,91
Mimosa sp. Mimosa tenuiflora	8,36
Senegalia bahiensis	0,10
Fabaceae-Papilinioideae	0,10
Desmodium uncinatum	0,03
Malvaceae	0,03
Tipo Melochia	13,32
Sida sp.	0,02
Walteria sp.	0,07
Myrtaceae	0,07
Tipo Myrcia	4,86
Eucalyptus sp.	1,58
Polygonaceae	1,50
Antigonon sp.	0,68
Rhamnaceae	0,00
Zizyphus joazeiro	0,03
Sapindaceae	0,03
Serjania sp.	0,39
Sapotaceae	0,37
Manilkara zapota	0,16
Turneraceae	0,10
Turnera sp.	0,09
Não identificado	0,56
Total	100,00
10441	100,00

Confrotando os resultados das observações diretas (*in loco*) e as indiretas (pólen armazenado), observou-se que duas espécies, os gêneros *Chamaecrista* e *Turnera*, registradas pelo primeiro método também foram observadas pelo segundo método. Provavelmente, o esforço amostral pelo método de Sakagami apesar de grande, não apresentou suficiência amostal para estimar de forma satiafatória, a amplitude trófica das espécies vegetais envolvidas.

Comparando as análises feitas com estimadores de riqueza o número de tipos polínicos variou entre 39 (Chao 2) e 46 (Jack 1) encontrados ao longo das amostras coletadas no período de estudo (Figura 1). Esses índices sugerem que entre 85% a 93% dos tipos polínicos presente no local de estudo foram efetivamente amostrados. Entretanto, as curvas dos estimadores também não se estabilizaram, indicando que o aumento no esforço amostral poderia elevar o número de tipos estimados.

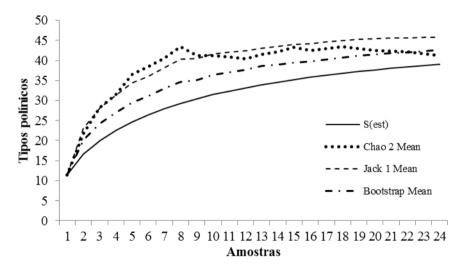


Figura 1. Curva de rarefação e estimadores de riqueza (Chao 2, Jack 1, and bootstrap) dos tipos polínicos coletados em potes de pólen de ninhos de *Melipona mandacaia*, Campus III (UNEB), Juazeiro, Bahia, Brasil.

Conclusões

As espécie de plantas da família Fabacea são as principaias fonte de recursos florias (pólen e néctar) para a manutenção das abelhas *Melipona mandacaia*, em paisagens urbanas do semiárido nordestino.

A utilização de metodologias indiretas (estudos palinológica) combinadas as observações diretas das abelhas em flores (levantamentos) é imprescindíveis no conhecimento e ententendimento das relações tróficas entre as abelhas silvestres e das fontes alimentares disponiveis no local onde esses organismos são criados. Essas informações devem auxiliam na manutenção e preservação das abelhas nativas sem ferrão tanto em agroecossitemas, ambientes naturais e urbanos.

(83) 3322.3222

Referências

BATALHA-FILHO, H., WALDSCHMIDT, A.M., & ALVES, R.M.O. Distribuição potencial da abelha sem ferrão endêmica da Caatinga, *Melipona mandacaia* (Hymenoptera, Apidae). Magistra, v. 23, p. 129–133, jul/set, 2011.

CARNEIRO-NETO, T. F. S.; REBOUCAS, P. L. O.; PEREIRA, J. E.; DUARTE, P. M.; SANTOS, M. H. L. C.; SILVA, G. C.; SIQUEIRA, K. M. M. . Spectrum of Pollen Stored by *Melipona mandacaia* (Smith, 1863) (Hymenoptera: Apidae, Meliponini) in an Urban Arid Landscape. Sociobiology, v. 64, p. 284-291, 2017.

COLWELL, R.K. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User's Guide and application available online at http://purl.oclc.org/estimates, 2013.

COLWELL, R.K. & CODDINGTON J.A. (1994) Estimating terrestrial biodiversity thourgh extrapolation. Phil. Trans. R. Soc. Lond. B v.345, p.101-118, 1994.

EMBRAPA. Dados Meteorológicos, Estação Agrometeorológica de Mandacarú, Juazeiro-BA. Disponível em< www.cpatsa.embrapa.br>. Acesso em 04.07.2016

MAURIZIO, A. & LOUVEAUX, J. Pollens des plantes mellifères d'Europe. U.G.A.F., Paris, 148p, 1965.

NUNES, L. A. Estudo Morfológico das Populações de *Melipona quadrifasciata anthidioides* Lepeletier (Hymenoptera: Apidae) na Região Semi-Árida do Estado da Bahia. Dissertação de Mestrado. Universidade Federal do Recôncavo da Bahia. Cruz das Almas, BA, Brasil, 76p, 2008.

SIQUEIRA, K.M.M., MARTINS, C.F., KIILL, L.H.P. & SILVA, L.T. Estudo comparativo da polinização em variedades de aceroleiras (*Malpighia emarginata* DC, Malpighiaceae). Revista Caatinga (UFERSA), v. 24, p. 18-25, 2011.