

SECAGEM DE QUIABO (Abelmoschus esculentus L. Moench) EM ESTUFA

Teresa Letícia Barbosa Silva

Universidade Federal de Campina Gtande, teresa.silva@eq.ufcg.edu.br

Resumo

As técnicas pertinentes ao uso de polímeros naturais para o tratamento de água captada para o

consumo humano estão cada vez mais em evidência, devido à maior eficiência de resultados e o

menor risco à saúde da população. O Quiabo, Abelmoschus esculentus L. Moench, é uma hortaliça

muito cultivada nos trópicos e subtrópicos. Seu fruto verde é muito utilizado na alimentação

humana, enquanto o maduro é muito eficazmente empregado como agente floculante em tratamento

de águas. Portanto, é de suma importância o estudo da sua cinética de secagem, no intuito de

alcançar as melhores condições para se executar o processo, sem interferir na natureza do produto.

Neste trabalho são realizados experimentos para analisar a cinética de secagem de rodelas de

quiabo, utilizando uma estufa de secagem nas temperaturas de 70°C, 80°C e 90°C a fim de avaliar

sua influência no processo. Constatou-se forte influência da temperatura na taxa de secagem. Dos

modelos semiteóricos ajustados aos dados coletados, o Logarítmico foi o que melhor descreveu o

comportamento da secagem do quiabo nas condições estudadas.

Palavras-Chave: Quiabo, Secagem, Cinética.

Introdução

As constantes alterações ambientais, devido ao aumento da concentração populacional e

industrial, são fatores importantes para contaminação da água e de seus reservatórios. Atualmente,

vêm-se buscando os mais diversos métodos de prevenção ou tratamento dos impactos causados ao

meio ambiente.

O quiabo, Abelmoschus esculentus L. Moench, é uma hortaliça da família Malvaceae, muito

cultivada nos trópicos e subtrópicos. Os frutos verdes são consumidos em saladas, cozidos ou

assados. Já, estando maduras, suas sementes são ricas em óleos e proteínas. Como o fruto maduro é

rejeitado pelo consumidor, este pode ser amplamente utilizado no tratamento de águas (LIMA,

2007). Por fazer parte da alimentação humana, o quiabo não apresenta riscos à saúde, além de ter

baixo custo. Ao ser utilizado em conjunto com o sulfato de alumínio, pode diminuir a quantidade

(83) 3322.3222 contato@conidis.com.br

necessária deste coagulante sem afetar a eficiência do processo (ASSIS *et al.*, 2011). O Brasil possui ótimas condições para a lavoura do quiabo, como o clima, por exemplo, principalmente nas regiões Nordeste e Sudeste. É o que afirmam Mota *et al.* (2005), que também se referem ao seu baixo custo de produção, bem como, resistência a pragas, alto valor nutritivo e ciclo rápido (*apud* MOTA, 2000).

Segundo Heck (sem data), a secagem se refere à retirada de água ligada fisicamente a uma substância, não incluindo os processos onde essa retirada se dê por meios mecânicos como centrifugação ou prensagem. Ela se aplica quando se deseja facilitar o manuseio de substâncias, baixar o custo de transporte de matérias-primas ou cumprir especificações relativas a um produto.

A umidade de um sólido pode ser classificada em duas categorias: base seca, que é a relação entre a massa de umidade (M_a) e a massa do sólido sem a umidade (M_d), e base úmida, que se refere ao quociente entre a massa de umidade e a massa do sólido úmido ($M_a + M_d$). A primeira pode ser expressa em massa de água por massa de sólido seco e a outra, em massa de água por massa de sólido úmido (PACHECO, 2013):

$$W_d = \frac{M_a}{M_d} \qquad (1)$$

$$W_w = \frac{M_a}{M_a + M_d} \tag{2}$$

De acordo com Pacheco (2013), a relação entre uma umidade e outra é dada por:

$$W_d = \frac{W_W}{1 - W_W}$$
 (3)

em que W_d é a umidade de base seca e W_w, a de base úmida.

Os modelos matemáticos mais aplicados para descrever o fenômeno de secagem de materiais de camada fina são os semiteóricos, vistos que se baseiam na suposição de que as condições de fluxo sejam isotérmicas e que a resistência à transferência de massa se aplique apenas à superfície do produto, harmonizando teoria e facilidade de uso (SANTOS, 2014, *apud* BROOKER *et al.*, 1992). Os parâmetros presentes nos modelos são ajustáveis de acordo com os dados experimentais. A razão de umidade adimensional, U_a, é calculada pela expressão:

$$U_a = \frac{X - X_{eq}}{X_0 - X_{eq}} \quad (4)$$

em que X é o teor de água no instante t, X_{eq} é o teor de água de equilíbrio e X₀ é o teor de água inicial (TEIXEIRA *et al.*, 2015, *apud* SACILIK, 2007; DOYMAZ, 2011).

Este trabalho tem como objetivo principal estudar a cinética de secagem de quiabo em rodelas, utilizando uma estufa. Seus objetivos específicos são a determinação da umidade das

rodelas de quiabo, a análise do efeito da variável operacional temperatura (70°C, 80°C e 90°C) na cinética de secagem e a aplicação de modelos que descrevem a cinética de secagem.

Metodologia

Foram pesadas três amostras de quiabo cortado em rodelas, as quais foram colocadas em estufa a, aproximadamente, 105°C, durante 24 horas. Os dados de teor de umidade foram obtidos por meio das Equações (1) e (2).

A etapa seguinte do experimento foi realizada, também, em triplicata. Inicialmente, pesaram-se três amostras de quiabo em rodelas na balança analítica. Após pesadas, as amostras foram colocadas, simultaneamente, na estufa com renovação e circulação de ar, já previamente aquecida a 70°C. A massa das amostras foi medida a cada pequeno intervalo de tempo (20 minutos), até que o decréscimo da massa fosse considerado insignificante, ou seja, até que a massa se mantivesse, praticamente, constante.

Os procedimentos acima descritos foram repetidos para as temperaturas de 80°C e 90°C da estufa, sendo que, para esta última temperatura, o intervalo de tempo tomado entre as medidas foi de 10 minutos.

Os dados experimentais foram tratados utilizando o *software* Origin 8, que já implementa os cálculos do coeficiente de determinação (R²), a soma dos quadrados dos resíduos (SQE) e o erro padrão da estimativa (SE).

Para se poder afirmar que um modelo de ajuste reproduziu bem todos os pontos dos experimentos, o valor do coeficiente de determinação deve estar próximo à unidade, ou seja, 100%, enquanto a soma dos quadrados dos erros deve ser a mínima possível (OLIVEIRA, 2017, *apud* DRAPER e SMITH, 1998).

Resultados e discussão

A Tabela 1, a seguir, contém os valores de massa das amostras de quiabo medidas antes e após a secagem de 24h a 105°C.

Tabela 1 - Massa de quiabo antes e depois da secagem a 105°C

Tempo (h)	Amostra 1 (g)	Amostra 2 (g)	Amostra 3 (g)
0	14,96	12,88	21,07
24	2,10	1,60	2,51

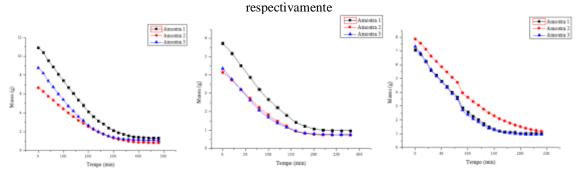
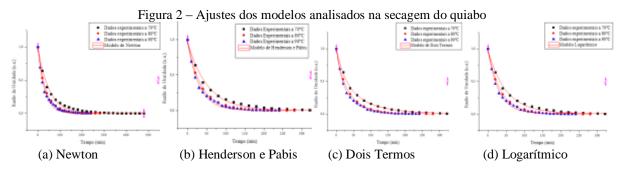

Os valores da umidade em base seca e úmida foram obtidos de acordo as equações (1) e (2) e encontram-se em seguida:

Tabela 2 - Umidade do quiabo (g água/g quiabo seco, em umidade de base seca - W_d , e g de água/g quiabo total, por cento, em umidade de base úmida - W_w)


Umidade	Amostra 1	Amostra 2	Amostra 3	Média
W_d	6,12	7,05	7,39	6,85
W_w	85,96	87,58	88,09	87,21

As figuras a seguir representam os gráficos da massa *versus* o tempo de secagem para as temperaturas de 70°C, 80°C e 90°C, criados a partir do *software* Origin 8, utilizando os dados contidos nas tabelas presentes no Apêndice A.

Figura 1 - Comportamento da massa das amostras 1, 2 e 3 com o tempo para as temperatura de 70°C, 80°C e 90°C,

Utilizando o *software* Origin 8, construíram-se os gráficos das razões de umidade obtidas para cada temperatura em função do tempo. Estes gráficos foram ajustados, por meio da função de ajuste não linear, a modelos semiteóricos. O modelo que apresentou o melhor conjunto de resultados, levando em consideração o valor de R² e do erro padrão da estimativa, SE, referente aos valores encontrados para seus parâmetros, foi o modelo Logarítmico, embora o modelo de Newton também tenha satisfeito as expectativas. No modelo de Dois Termos e no de Henderson e Pabis é que, apesar de o valor de R² ter sido bastante aceitável, os valores de SE não foram tão satisfatórios.

Tabela 3 - Valores	s obtidos para R ² e S	SOE nos aiustes dos	modelos matemáticos

Modelos		$R^2(\%)$			SQE	
	70°C	80°C	90°C	70°C	80°C	90°C
Newton	99,24	99,81	99,28	4,23708*10 ⁻⁴	1,4295*10-4	4,3137*10-4
Henderson e Pabis	99,30	99,81	99,34	3,9506*10 ⁻⁴	1,4060*10-4	3,9624*10 ⁻⁴
Dois Termos	99,94	99,99	99,87	3,3114*10 ⁻⁵	8,2051*10 ⁻⁶	7,9509*10 ⁻⁵
Logarítmico	99,44	99,83	99,44	3,1411*10-4	1,3101*10-4	3,3645*10-4

Tabela 5 – Parâmetros e seus respectivos erros obtidos do ajuste do modelo de Newton (Expressão: $U_a = e^{-kt}$)

T (°C)	\boldsymbol{k}	SE
70	0,02005	5,23179*10 ⁻⁴
80	0,02888	5,26532*10-4
90	0,03375	8,14644*10-4

Tabela 6 – Parâmetros e seus respectivos erros obtidos do ajuste do modelo de Henderson e Pabis (*Expressão*:

		$U_a = a e^{-Rt}$		
T (°C)	a	SE-a	k	SE-k
70	0,9700	0,01765	0,0194	1,59056
80	0,9874	0,01124	0,0285	0,73278
90	0,9691	0,01700	0,0326	0,88689

Tabela 7 – Parâmetros e seus respectivos erros obtidos do ajuste do modelo de Dois Termos (*Expressão*: II – 2 $e^{-k_0t} + h e^{-k_1t}$)

$U_a = a.e^{x_0} + b.e^{x_1}$								
T (°C)	а	SE-a	k_0	$SE-k_0$	b	SE-b	k_1	$SE-k_1$
70	0,4825	0,05835	0,0125	5,04766	0,5208	0,05782	0,0375	2,3393
80	0,2321	0,04647	0,0727	2,23843	0,7680	0,04648	0,0238	1,2425
90	0,5861	0,09032	0,0232	3,35375	0,4192	0,08940	0,0706	2,36072

Tabela 8 – Parâmetros e seus respectivos erros obtidos do ajuste do modelo Logarítmico (Expressão: $U_a = a.e^{-kt} + c$)

T (°C)	a	SE-a	k	SE-k	c	SE-c
70	0,96506	0,01610	0,02041	6,6345*10-4	0,0123	0,00457
80	0,9838	0,01123	0,0291	7,1338*10-4	0,00576	0,00406
90	0,9650	0,01604	0,0342	1,1200*10-3	0,01174	0,00504

Conclusões

O modelo Logarítmico é o que representa de melhor maneira a cinética de secagem do quiabo por apresentar o melhor conjunto de resultados no que se refere ao coeficiente de determinação, R², com valor próximo a 100% e aos menores valores da soma dos quadrados dos resíduos, SQE, e do erro padrão da estimativa, SE, para os parâmetros.

A temperatura é o principal fator controlador do procedimento de secagem, influenciando de maneira diretamente proporcional a velocidade do mesmo, ou seja, quanto maior for o seu valor, mais rapidamente se chegará ao valor de equilíbrio da secagem e o melhor comportamento de secagem obtido para o quiabo se dá à temperatura de 80°C para todos os modelos ajustados.

Os resultados deste relatório são apresentados como alternativa para otimização do processo de utilização do quiabo com floculante em tratamento de águas.

Referências

ASSIS, G. B. R.; SILVA, E. M. S.; SILVA, A. C. **Ensaio de desidratação do quiabo** (*Abelmoschus esculentus*) **para uso como floculante**. In: Reunião Anual da Sociedade Brasileira Para o Progresso da Ciência, 63., 2011, Goiânia. *Anais eletrônicos...* Goiânia: [s.n.], 2011. p. 1-4. Disponível em: http://www.sbpcnet.org.br/livro/63ra/arquivos/jovem/41ensaio.pdf>. Acesso em: 26 fev. 2017.

HECK, N. C. **Secagem**. Metalurgia Extrativa dos Metais Não-Ferrosos II-A - DEMET / UFRGS. Disponível em:

http://www.ct.ufrgs.br/ntcm/graduacao/ENG06632/Secagem.pdf. Acesso em: 26 fev. 2017.

LIMA, G. J. de A. **Uso de polímero natural do quiabo como auxiliar de floculação e filtração em tratamento de água e esgoto**. 2007. 154 p. Dissertação (Mestrado em Engenharia Ambiental) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2007. Disponível em:

http://www.peamb.eng.uerj.br/trabalhosconclusao/2007/GuilhermeJulioMdeAbreuPEAMB_2007. pdf>. Acesso em: 01 mar. 2017.

MOTA, W.F.; FINGER, F.L.; SILVA, D.J.H.; CORRÊA, P.C.; FIRME, L.P.; NEVES, L.L.M. **Caracterização físico-química de frutos de quatro cultivares de quiabo**. Horticultura Brasileira, Brasília, v.23, n.3, p.722-725, jul.-set. 2005. Disponível em: http://www.scielo.br/pdf/hb/v23n3/a06v23n3.pdf>. Acesso em: 21 fev. 2017.

OLIVEIRA, A. E. T. P. **Estudo da Secagem de** *Scaffold* **Para Regeneração Óssea.** 2017. 52 p. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Química) - Universidade Federal de Campina Grande, Campina Grande, 2017.

PACHECO, C. R. F. **Conceitos Básicos de Secagem**. 2002. 13 p. Optativa Aplicada (Engenharia de Alimentos II) - Universidade de São Paulo, [S.l.], 2002. Disponível em: http://sites.poli.usp.br/d/pqi2530/alimentos/pacheco_secagem_cap_1.pdf. Acesso em: 27 fev. 2017.

SANTOS, H. C. Secagem de folhas de mastruz (*Chenopodium ambrosioides* L.) em estufa. 2014. 57 p. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Química) - Universidade Federal de Campina Grande, Campina Grande, 2014.

TEIXEIRA, P. C. M.; ZUNINGA, A. D. G.; RIBEIRO, L. **Modelagem Matemática e Cinética da Secagem da Amêndoa do Baru** (*Dipteryx alata* **Vog**). 2015. 16p. (Engenharia de Alimentos) - Centro Científico Conhecer, Enciclopédia Biosfera, Tocantins, 2015. 11.Disponível em: http://www.conhecer.org.br/enciclop/2015b/agrarias/modelagem%20matematica.pdf>. Acesso em: 26 fev. 2017.