

ÉPOCA DE SEMEADURA COMO FATOR PREPODERANTE PARA O DESENVOLVIMENTO DE SOJA NO SEMIÁRIDO PIAUIENSE

Daniel Lopes Ferreira dos Santos¹, Carla Michelle da Silva², Antônio Veimar da Silva¹, Cleriston Correia da Silva Souza¹ e Wagner Rogério Leocádio Soares Pessoa¹

¹Universidade Estadual do Piauí – UESPI, Picos – PI. Daniel.haberr63@gmail.com, veimar26@hotmail.com, cleriston.css@outlook.com, wrlsp1@yahoo.com.br

²Universidade Federal do Piauí – UFPI, Bom Jesus – PI. carla.mic@hotmail.com.

INTRODUÇÃO

A soja [*Glycine max* (L.) Merrill] é de grande importância social e econômica do mundo (FAO, 2013), fornecendo proteínas e óleos comestíveis e seu grande número de produtos que são obtidos direta ou indiretamente, servido de alimentação humana e animal. Atualmente, a sua área plantada no mundo ultrapassa 58 milhões de hectares, e sua produtividade e produção são superiores a 3500 Kg.ha⁻¹ e 210.000 toneladas, respectivamente (CONAB, 2016).

Para a alta produtividade e elevada produção de soja, vários pesquisadores estudam e discutem tanto a época de semeadura quanto o genótipo de soja, onde ambas são influenciadas pelos fatores e pelos elementos climáticos como, por exemplo, o fotoperíodo, temperatura e precipitação que exercem o controle no crescimento vegetativo e reprodutivos, refletindo no crescimento da planta e no rendimento de grãos (JIANG et al., 2011).

Deve-se pontuar que são necessários estudos das diferenças edafoclimáticas e lançamento de novas cultivares, para cada região, no intuito de diagnosticar melhor os efeitos dos fatores ambientais no crescimento e desenvolvimento das plantas de soja, levando em consideração as diferentes épocas de semeadura (MEOTTI et al. 2012)

Assim, para o sucesso da lavoura, o fator de mais importância nos tempos atuais, é a época de semeadura, pois resulta de estudos de alterações climáticas como o período chuvoso, radiação solar, do fotoperíodo e da temperatura ideal disponível para às plantas de soja (SUBEDI et al., 2007). Por este motivo é de suma importância o plantio da soja na época recomendado para a região (RODRIGUES et al., 2008; STÜLP et al., 2009).

O objetivo deste trabalho foi avaliar o efeito da época de semeadura no desempenho de três cultivares de soja, e indicar a cultivar mais adaptada ao microclima da fazenda Joaquim Isac, no semiárido piauiense.

METODOLOGIA

O experimento foi conduzido no ano agrícola 2015/16 na Fazenda Joaquim Isac, situada na localidade Granada II no município de Francisco Santos, Piauí (6° 59' 34'' S 41° 08' 16'' W com 270 m de altitude). O solo da área experimental foi analisado quanto às características químicas e a adubação realizada de acordo com a da análise de solo (Tabela1). As concentrações obtidas foram:

Tabela 1. Características químicas do solo da área experimental do Sítio Joaquim Isac, povoado Granada II, município de Francisco Santos-PI, 2015

Prof.	рН	P	K	Na	Ca 2+	Mg 2+	Al 3 ⁺	H + Al	V
(cm)	- H ₂ O-	mg.dm ⁻³				cmol (c).dm ⁻³			
0-20	5,4	2,3	5,2	9,6	0,5	0,3	0,1	1,1	46,25

Os dados climáticos referentes à precipitação pluvial (mm), insolação (h) e temperatura máxima e mínima (°C) foram coletados diariamente. Em seguida foram tabulados no programa Excel para elaboração do gráfico (Figura1).

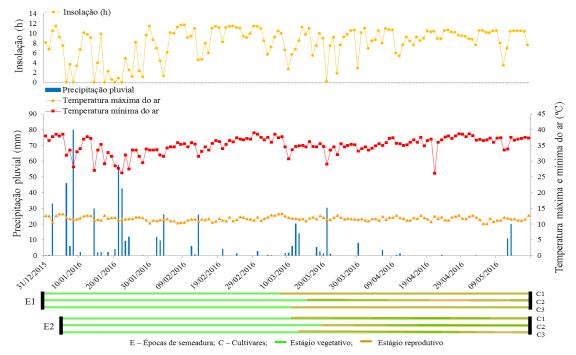


Figura 1: Evolução temporal diária da precipitação pluvial (mm), temperatura máxima e mínima do ar (°C) e insolação (h) de 31/12/2015 a 18/05/2016.

O experimento foi instalado em delineamento de blocos casualizado, com quatro repetições, no arranjo fatorial 2 x 3, em parcelas subdivididas. Cada subparcela foi constituída de quatro linhas, com cinco metros de comprimento, espaçadas a 0,5 metros.

Os cultivares de soja estudados possuem alta estabilidade e adaptabilidade, elevado potencial produtivo, hábito de crescimento determinado, sendo eles: cultivar 1 (C1), tem ciclo de 120 a 125 dias e grupo de maturação 8.2; cultivar 2 (C2), possui ciclo de 128 a 135 dias e grupo de maturação 8.6; e cultivar 3 (C3), planta com porte médio de 75 cm e boa resistência ao acamamento, apresenta ciclo de 120 a 125 dias e grupo de maturação 8.3.

Realizou-se a semeadura a partir do início das chuvas e constaram de duas épocas (E): 30/12/2015 e 06/01/2016. Depositando-se 25 sementes por metro linear o desbaste foi realizado quando 80% das plantas alcançaram o estádio fenológico V4, ou seja, quando apresentarem três folhas trifolioladas.

A colheita foi realizada manualmente com aproximadamente 150 DAS, quando as plantas alcançaram o estádio fenológico R9. As vagens coletadas foram acondicionadas em sacos plásticos e conduzidas ao laboratório de Biologia da Universidade Estadual do Piauí, campus Professor Barros Araújo (UESPI), onde efetuou-se a debulha.

Os componentes avaliados foram: diâmetro do caule (DC), número de nós (NNÓS) e número de grãos por vargens (NGV). Após a obtenção dos dados das avaliações procedeu-se a análise de variância utilizando o programa estatístico Assistat 7.7 (SILVA; AZEVEDO, 2009) e quando observada significância estatística foi realizada a comparação entre as médias pelo teste de Tukey a 5% de probabilidade.

RESULTADOS E DISCUSSÕES

Os resultados da análise de variância apresentam efeito significativo da interação época de semeadura (E) x cultivar (C) para as variáveis diâmetro do caule (DC), número de nós (NNÓS) aos 60 dias após semeadura (DAS) e número de grãos por vargens (NGV) (Tabela 2).

Tabela 2. Análise de variância para os caracteres diâmetro do caule (DC) e número de nós (NNÓS) aos 60 dias após semeadura (DAS) e número de grãos por vargens (NGV)

FV	CI	Quadrados Médios						
ΓV	GL	DC (cm)	NNÓS (u)	NGV (u)				
Época (E)	1	0.029^{**}	4.594**	0.070^{NS}				
Cultivar (C)	2	0.031**	7.948^{**}	0.159^{**}				
ExC	2	0.012^{**}	2.906^*	0.070^{**}				
Erro (E)	3	0.0006	0.010	0.032				
Erro (C)	12	0.0003	0.538	0.0097				
C.V.(%) (E)		8.05	1.58	7.85				
C.V.(%) (C)		5.46	11.32	4.34				

^{ns}Não significativo, ^{*}Significativo a 5% e ^{**}Significativo a 1% de probabilidade pelo teste F de Tukey. Interação entre época e cultivar (E x C)

O efeito combinado de E x C foi desdobrado para os caracteres DC, NNÓS aos 60 DAS e NGV, mostrando que a época 2 e o cultivar 2 se destacaram dos demais tratamentos apresentando as maiores médias (Tabela 3).

Tabela 3. Valores médios do desdobramento da interação para as variáveis diâmetro do caule (DC), número de nós (NNÓS) aos 60 dias após semeadura (DAS) e número de grãos por vargens (NGV)

_	60 DAS								
Época	DC (cm)]	NNÓS (u)		NGV (u)		
	C1	C2	C3	C1	C2	C3	C1	C2	C3
E 1	0.25bB	0.30bA	0.25aB	5.62bB	7.12aA	5.37aB	2.22aA	2.30bA	2.14aA
E2	0.31aB	0.45aA	0.25aC	7.87aA	7.50aA	5.37aB	2.12aB	2.57aA	2.29aB

Letras maiúsculas: comparações entre cultivares; letras minúsculas: comparações entre épocas de semeadura, pelo teste de Tukey a 5% de probabilidade.

No DC observa-se que para o C1 e C2 a melhor época de semeadura é a E2, sendo que na C3 a época não difere estatisticamente. Isso mostra que a época de semeadura e o cultivar adequado são fatores preponderantes na cultura da soja, pois com ela, na época de semeadura pode-se estimar o período correto onde as plantas poderão receber os elementos climáticos adequados para o

crescimento e desenvolvimento dessa cultura. Tendo em vista isso, é importante salientar que a época 2 houve melhor distribuição da precipitação (Figura 2) confirmando que o elemento água é preponderante para o crescimento e desenvolvimento da cultura da soja. Já no fator cultivares, o C2, com grupo de maturação 8.6, demonstrou valores maiores às demais na variável DC. Isso pode ter ocorrido porque este cultivar fica mais tempo em campo, desenvolvendo melhor a parte vegetativa e acumulando reserva de nutrientes para o período reprodutivo (TAIZ; ZEIGER, 2013). Também é preciso salientar que cultivares tardias, tem seu florescimento retardado, influenciado pela época de semeadura, aumentando assim o crescimento linear e consequentemente o rendimento de grãos. (EMBRAPA, 2004)

Na variável NNÓS, a pior média na época de semeadura encontra-se na E1C1, diferindo estatisticamente em relação a E1C2, mas não diferindo em relação a E1C1, já com relação às cultivares, a pior foi a C1 na primeira época de semeadura. A esse respeito, EMBRAPA (2004) destacou que cultivares mais precoces podem ter o florescimento antecipado, por ficar menos tempo disponível no solo, reduzindo consequentemente o crescimento e o rendimento de grãos.

No número de grãos por vagens, a maior média se encontra na época 2 com a cultivar 2, demonstrando mais uma vez a influência da época de semeadura no genótipo da soja, beneficiando o C2, por ser de grupo de maturação maior 8.6, mostrando que essa diferença de dias entre as cultivares é um fator essencial e que deve ser estudado melhor. Chen; Wiatrak (2010) também notaram que os elementos climáticos influenciam de forma direta os grupos de maturação ocasionando discrepância no comportamento das plantas.

CONCLUSÃO

A primeira época (30/12/2015) é a menos recomendável para a safra 2015/16.

O cultivar C2, com grupo de maturação 8.6, é o mais adaptado ao microclima da fazenda Joaquim Isac, no semiárido piauiense

REFERÊNCIAS BIBLIOGRÁFICAS

CHEN, G. H.; WIATRAK, P. Soybean development and yield are influenced by planting date and environmental conditions in the southeastern coastal plain, United States. **Agronomy Journal**, v.102, n.6, 2010, p.1731-1737.

CONAB. Acompanhamento de mercado e desenvolvimento das culturas de milho, soja, trigo e mandioca no estado do paraná – 2015/2016. 2016. Disponível em: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/15_12_03_17_36_22_2015_12_03.pdf. Acesso em: 10 mar. 2016.

EMBRAPA. **Sistema brasileiro de classificação de solos** – região central do Brasil (2005). Londrina: Embrapa Cerrados: Embrapa Agropecuária Oeste: Fundação Meridional, 2004, 239p.

FAOSTAT, **Top Production by world-2011**. 2013. Disposable in: http://faostat.fao.org/site/339/default.aspx. (Accessed in august de 2016).

JIANG, Y.; WU, C.; ZHANG, L.; HU, P.; HOU, W.; ZU, W.; HAN, T. Long-day effects on the terminal inflorescence development of a photoperiod-sensitive soybean [Glycine max (L.) Merr.]

variety. Plant Science, v.180, 2011, p.504-510.

MEOTTI, G. V.; BENIN, G.; SILVA, R. R.; BECHE, E.; MUNARO, L. B. Épocas de semeadura e desempenho agronômico de cultivares de soja. **Pesquisa agropecuária brasileira**, Brasília, v.47, n.1, 2012, p.14-21.

RODRIGUES, O.; TEIXEIRA, M.C.C.; COSTENARO, E.R.; AVOZANI, A. **Rendimento de grãos de soja em semeadura tardia**. Passo Fundo: Embrapa Trigo, 2008. 26p. (Embrapa Trigo. Boletim de pesquisa e desenvolvimento Online, 66).

SILVA, F. A. S.; AZEVEDO, C. A. V. **Principal components analysis in the software assistat-statistical assistance**. In: 7th World Congress on Computers in Agriculture, p. 1-5, Reno. Proceedings of the 7th World Congress on Computers in Agriculture. St. Joseph: ASABE. 2009. CD-Rom.

SUBEDI, K. D.; MA, B. L.; XUE, A. G. Planting date and nitrogen effects on grain yield and protein content of spring wheat. **Crop Science**, v.47, 2007, p.36-47.

STÜLP, M.; BRACCINI, A.L. de; ALBRECHT, L.P.; ÁVILA, M.R.; SCAPIM, C.A.; SCHUSTER, I. Desempenho agronômico de três cultivares de soja em diferentes épocas de semeadura em duas safras. **Ciência e Agrotecnologia**, v.33, p.1240-1248, 2009.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 5.ed. Porto Alegre: Artmed, 2013. 918p.