

ANÁLISE DE CARBONATOS UTILIZANDO IMAGENS DE MICROTOMOGRAFIA DE RAIOS-X

Marianna Dantas da Silva¹; José Agnelo Soares²; Pedro Henrique Alves de Lima³, Leyllane Renalle Batista de Almeida⁴

¹ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia de Mecânica -<u>marianna dds@hotmail.com</u>

² Universidade Federal de Campina Grande, Unidade Acadêmica de Mineração e Geologia – <u>agnelosoares@gmail.com</u>

³ Universidade Federal de Campina Grande, Unidade Acadêmica de Mineração e Geologia – <u>pedro.mining@yahoo.com.br</u>

⁴ Universidade Federal de Campina Grande, Unidade Acadêmica de Mineração e Geologia – <u>leylla_almeida@hotmail.com</u>

RESUMO

A construção de modelos digitais a partir de imagens de microtomografia de raios-X foi utilizada na caracterização petrofísica de rochas carbonática oriundas das bacias Potiguar e de Sergipe, ambas localizadas na região nordeste brasileira. As propriedades estimadas a foram macroporosidade, microporosidade, permeabilidade e conectividade de poros. Os resultados obtidos foram comparados com os valores medidos em ensaios de rotina da petrofísica convencional para a validação da metodologia. A análise se mostrou eficiente para cálculos de porosidade, uma vez que os resultados foram similares aos obtidos através dos ensaios laboratoriais. Os valores estimados para permeabilidade mostraram uma diferença de escala se comparados aos resultados dos ensaios laboratoriais. Isso ocorre em virtude do tamanho das amostras estudadas, que possuem escala aproximada a dos poros, assim, destaca-se a necessidade de serem estudadas metodologias de *upscaling* para que essas informações possam ser utilizadas em maiores escalas. A petrofísica computacional é uma técnica não destrutiva que permite a visualização 3D e qualificação da conectividade de poros e outras características físicas das rochas, como a visualização de cristais e feições microbiológicas, permitindo o melhor entendimento de suas propriedades.

Palavras-chave: microtomografia, petrofísica, rochas carbonáticas.

1. INTRODUÇÃO

Dentre as técnicas exploratórias para caracterização de reservatórios de petróleo, destaca-se a petrofísica computacional de rochas de imagens de а partir microtomografia de raios-X. Segundo Porto[2015] essa é uma técnica não destrutiva que permite definir, com alta precisão, a geometria dos espaços porosos e dos grãos minerais, que possibilitam a criação de modelos digitais para o estudo das propriedades petrofísicas em diversas condições ambientais.

Em princípio, imagens de raios-X registram a estrutura interna de um objeto medindo as diferenças no grau de atenuação do mesmo durante a sua passagem pelo material [Hearst *et al.*, 2005; Holleben, 1993].

www.conepetro.com .br [83] 3322.3222

contato@conepetro.com.br

As imagens geradas por esta metodologia variam em tons de cinzas de acordo com a densidade do material. Isso significa que, os pontos que apresentam coloração aproximadamente branca são preenchidos por materiais de alta densidade, enquanto que pontos com coloração aproximadamente preta são preenchidos por ar, ou seja, espaços porosos.

Os objetivos deste trabalho são estimar as propriedades físicas de rochas carbonáticas de duas bacias sedimentares da região nordeste a partir do processamento de imagens de microtomografia de raios-X, e comparar os resultados com os valores medidos em ensaios de rotina da petrofísica convencional para а validação da metodologia. Para tanto, foi utilizado o software Avizo Fire[®] para gerar modelos computacionais tridimensionais das amostras a fim de analisar a macroporosidade, permeabilidade microporosidade, е conectividade de poros.

2. METODOLOGIA

Foram selecionadas cinco amostras de rochas carbonáticas das Bacias Potiguar e duas da Bacia de Sergipe [Tabela 1].

Tabe	ela	1:	Descrição	das	amostras.
------	-----	----	-----------	-----	-----------

Amostra	Litologia	Bacia	
TFG_3			
TFG_23	Tufa	Potiguar	
TUFA_CR02B_06			
CAL_RONC_V	Dolomita		
LAJ_SOL_V			
NAS_1	Calcário	Sergipe	
NAS_8			

2.1. Petrofísica convencional

Nesta fase as amostras passam por dois processos: primeiro a preparação dos plugues e numa segunda etapa, ensaios de porosidade, densidades e permeabilidade. Durante a etapa de preparação dos plugues, as amostras são serradas em formato cilíndrico e retificadas, de forma a garantir que suas extremidades estejam planas e paralelas entre si.

Para os ensaios, é utilizado o equipamento Ultraporoperm 500[®] – CoreLab, o qual utiliza a lei de Boyle-Mariotte para medidas de porosidade e lei de Darcy para medidas de permeabilidade [Tiab & Donaldson, 2004]

2.2. Petrofísica computacional

Após os ensaios convencionais, foram selecionadas regiões dos plugues onde foram extraídas subamostras com cerca de 2 milímetros de diâmetro e 3 milímetros de comprimento [Figura 1]. Os plugues foram

www.conepetro.com

II CONGRESSO NACIONAL DE ENGENHARIA DE PERÓLEO, GÁS NATURAL E BIOCOMBUSTIVEIS IV WORKSHOP DE ENGENHARIA DE PETRÓLEO

enviados ao Laboratório de Meios Porosos e

В

А

Universidade

Federal de Santa Cantarina para que fossem cortados e fosse realizada a aquisição de imagens de microtomografia de raios-X. Cada subamostra gerou aproximadamente 1000 *slices* e apresentam resolução em torno de 1 a 5 µm.

O processamento das imagens foi realizado a partir do software Avizo Fire[®] 8.0 e propõe o cálculo da macroporosidade e microporosidade, estimativa da permeabilidade e qualificação da conectividade de poros.

2.2.1. <u>Cálculo da macroporosidade</u>

С

Para o cálculo de macroporosidade, seleciona-se a quantidade primeiro de arquivos de imagens a ser processada. Para este trabalho manteve-se o padrão de 300 imagens, sempre evitando imagens das zonas extremas da amostra que poderiam estar danificadas devido ao processo de corte. A esse arquivo é conectada a ferramenta Ortho *Slice*, que ativa a visualização das imagens. Em seguida, delimita-se o subvolume que será processado das imagens usando a ferramenta Subvolume Extract [Figura 2]. Posteriormente, utiliza-se a ferramente Mult-Thresholding para а segmentação das imagens, e são delimitadas três regiões com seus r<mark>espectivos limiares de tom</mark> de cinza, a região dos macroporos, intermediária e matriz [Figura 3]. Esse limiar é definido de forma específica para cara amostra. Após a segmentação, utiliza-se a ferramenta *Material* Statistics, a qual irá quantificar a quantidade de pixels de cada região e fornecerá uma tab<mark>ela com ess</mark>es valores. A partir desses dados, é possível calcular a macroporosidade utilizando a equação [1]:

$$m\Phi = \frac{Nma}{Nt}$$
[1]

www.conepetro.com .br [83] 3322.3222 contato@conepetro.com.br

Nt = Nma + Nfi + Nm [2]

Onde *Nma* é o número de pixels da região de macroporos, *Nfi* é o número de pixels da fase intermediária, *Nm* é número de pixels da matriz, e *Nt* corresponde ao número total de pixels das imagens.

Figura 2: Imagem microtomográfica da subamostra do plugue TUFA_CR02B_06 com

delimitação do volume a ser extraído e imagem do volume extraído.

Figura 3: Imagem das três regiões segmentadas pela ferramenta *Multi*-*Thresholding* da subamostra do plugue TUFA_CR02B_06.

www.conepetro.com .br

Figura 4: Fluxograma de trabalho para o cálculo da macroporosidade da subamostra do plugue TUFA_CR02B_06.

2.2.2. <u>Cálculo da microporosidade</u>

Para o cálculo de microporosidade foi utilizado o mesmo pacote de imagens e subvolume das etapas iniciais do cálculo da macroporosidade. Em seguida, aplica-se a ferramenta Interactive Thresholding, que segmentará, segundo o limiar escolhido, apenas a fase intermediária da imagem, que contém os microporos [Figura 5]. Após isso, converte-se as imagens de 8 para 64 bits, formato necessário para a utilização da ferramenta Arithmetic. No comando dessa ferramenta é inserida a equação [3] para quantificação dos microporos da região intermediária [Figura 6]. Em seguida, aplicase a ferramenta Global Analisys que calcula a microporosidade média *m* dessa região. A partir desses dados. calcula-se а microporosidade da amostra utilizando a equação [4]:

$$\mu \Phi = b \times (1 - \frac{(a - Lp)}{(Ls - Lp)})$$
[3]

Onde a entrada a é vinculada a imagem original convertida, b é vinculada a imagem correspondente a fase intermediaria

convertida, *Lp* e *Ls* correspondem ao limiar dos poros e sólidos, respectivamente.

$$\mu \Phi f = \frac{Nfi}{Nt} \times m \tag{4}$$

Figura 5: Imagem da região intermediária segmentada pela *ferramenta Interactive-Thresholding* da subamostra do plugue TUFA_CR02B_06.

Figura 6: Imagem dos microporos da fase intermediária da subamostra do plugue TUFA_CR02B_06.

www.conepetro.com .br [83] 3322.3222 contato@conepetro.com.br

Figura 7: Fluxograma de trabalho para o cálculo da microporosidade da subamostra do plugue TUFA_CR02B_06.

2.2.3. Estimativa da permeabilidade

Para estimativa da permeabilidade foi considerada apenas a região de macroporos. Primeiro, aplica-se a ferramenta *Multi-Thresholding* no subvolume anteriormente extraído. Nesta seção, segmenta-se apenas a região de macroporos e o restante é considerado como matriz. Em seguida, aplicase a ferramenta *Absolute Permeability Experiment Simulation*, a qual utiliza a equação de Navier-Stokes para a simulação de permeabilidade. O software sugere pressões de entrada e saída e viscosidade do fluido padrões, que são respectivamente, 130 KPA, 100 KPA e 0.01 Pa.s. Por fim, são fornecidos os resultados da simulação de permeabilidade através de uma tabela.

Figura 8: Fluxograma de trabalho para a estimativa de permeabilidade da subamostra do plugue TUFA_CR02B_06.

2.2.4. <u>Conectividade de poros</u>

Para a construção dos modelos em 3D da conectividade de poros foi utilizado o mesmo subvolume inicial, e nele aplica-se a ferramenta *Interactive Thresholding* para segmentar a fase macroporosa das imagens. A partir do arquivo gerado, utiliza-se a ferramenta *Label Analisys*, que tem função de identificar quais poros estão conectados e dividi-los em cores como apontado na figura 9. Devido a grande quantidade de dados

> www.conepetro.com .br

gerados nessa etapa, é necessário utilizar a ferramenta *Filter By Measure*, que elimina os poros de menor volume segundo um valor adotado. Por fim, aplica-se a ferramenta *Generate Surface* que gera o modelo 3D da conectividade dos poros da amostra [Figura 10].

Figura 9: Imagem dos poros conectados da subamostra do plugue TUFA_CR02B_06.

Figura 10: Modelo 3D da conectividade de poros da subamostra do plugue TUFA_CR02B_06.

Figura 11: Fluxograma de trabalho para estimativa da conectividade de poros da subamostra do plugue TUFA_CR02B_06.

3. RES<mark>ULTADOS E DISCUSSÃO</mark>

Os resultados das análises realizadas neste trabalho foram comparados com os dados obtidos na petrofísica convencional por Araújo [2013], Cavalcanti [2014], Ribeiro [2014], e Sousa [2014]. A tabela 2 apresenta os valores de porosidade e permeabilidade medidos no laboratório, macroporosidade, microporosidade, permeabilidade estimados através do processamento de imagens de microtomografia, e a classificação da conectividade dos macroporos.

www.conepetro.com .br [83] 3322.3222

contato@conepetro.com.br

De modo geral, os resultados de porosidade obtidos foram próximos aos obtidos nos ensaios laboratoriais [Figura 12].

Klab (md) **ф**lab (%) фmacro (%) фmicro (%) фtotal (%) Kcomp (md) Conectividade Amostra TFG 3 4.6 6.3 0.7 7.0 0.035 174.45 Intermediária TFG 23 16.7 15.6 0.9 16.6 0.253 5603.07 Intermediária 40.2 112.200 3790.00 TUFA_CR02B_06 40.0 34.9 5.3 Alta CAL_RONC_V 20.8 22.5 6.6 29.1 2.130 161.78 Alta LAJ_SOL_V 0.101 122.85 Intermediária 10.4 2.0 9.3 7.3 15.8 NAS_1 22.0 9.0 6.8 1.670 72.07 Baixa NAS_8 18.7 9.9 4.4 14.4 0.023 67.15 Baixa

Tabela 2: Resultados da petrofísica convencional e computacional.

50	
	DRP macro
	DRP micro
40	Lab total
20 -	
50	
20 -	
10	
U	

porosidade calculados foram inferiores aos

<mark>medidos na petro</mark>física convencional.

assim o software pode estar processando imagens que contem em sua maioria poros.

Figura 12: Gráfico representa comparação entre porosidade laboratorial e

> www.conepetro.com .br [83] 3322.3222 contato@conepetro.com.br

As dolomitas e tufas apresentaram valores de porosidade muito similares entre os dois métodos, com divergência de no máximo 2,4%. exceção da Com amostra CAL_RONC_V, onde o valor da porosidade laboratorial foi próximo ao resultado da macroporosidade. Este fato demonstra que as regiões selecionadas para o corte da subamostra foram representativas, e que a metodologia aplicada para os cálculos de macroporosidade e microporosidade são confiáveis. Para os calcários, os valores de

Os resultados permeabilidade de medidos e simulados divergiram em escala. Esse fato ocorre devido ao tamanho das utilizadas petrofísica amostras na computacional, que estão em escala aproximada ao tamanho de alguns poros,

da petrofísica computacional [DRP].

A partir dos modelos 3D criados da conectividade de poros pode-se fazer uma análise da geometria e conectividade dos mesmos. De tal modo, as amostras puderam

ser qualificadas entre baixa, intermediária e alta conectividade de poros. As amostras TUFA_CR02B_06 e CAL_RONC_V apresentam alta conectividade de poros, as amostras TFG_3, TFG_23 e LAJ_SOL_V apresentam conectividade intermediária e as amostras NAS_1 e NAS_8 exibem baixa conectividade.

4. CONCLUSÕES

análise petrofísica através do А de de processamento imagens microtomografia de raios-X se mostrou eficiente para cálculos de porosidade, uma vez que os resultados calculados foram bastante similares aos obtidos através de ensaios laboratoriais. Além disso, o método possibilita а realização de múltiplas simulações e cálculos sem causar danos na amostra, que por vezes é um problema durante a realização de ensaios na petrofísica convencional.

Os resultados obtidos para permeabilidade mostraram uma diferença de escala entre valores obtidos nos ensaios. Isso ocorre em razão do tamanho das amostras estudadas na petrofísica computacional, cuja escala é aproximada à dos poros, assim, destaca-se a necessidade de serem estudadas metodologias de *upscaling* para que essas informações possam ser utilizadas em maiores escalas.

Por fim, a petrofísica computacional permite a visualização 3D da conectividade de poros e outras características físicas, como a visualização da geometria de cristais e feições microbiológicas, permitindo o melhor entendimento das propriedades das rochas.

5. AGRADECIMENTOS

Os autores agradecem aos convênios firmados entre a PETROBRAS e a Universidade Federal de Campina Grande, através da Rede Carmod, que permitiram a realização deste trabalho.

6. REFERÊNCIAS BIBLIOGRÁFICA

ARAÚJO, A. M. M. *Medidas petrofísicas da tufa carbonática da formação Jandaíra, Bacia Potiguar.* Monografia de graduação, Universidade Federal de Campina Grande, PB, 2014.

www.conepetro.com .br [83] 3322.3222

contato@conepetro.com.br

CAVALCANTI, B. M. *Petrofísica de rochas carbonáticas da Formação Jandaíra*. Monografia de graduação, Universidade Federal de Campina Grande, PB, 2014. RIBEIRO, G. A. V. *Estudo petrofísico de rochas carbonáticas do membro Maruim, Formação Riachuelo, Bacia de Sergipe.* Monografia de graduação, Universidade Federal de Campina Grande, PB, 2014.

HEARST, J.R.; NELSON, P.H.; PAILLET, F.L.*Well Logging for Physical Properties: A Handsook for Geophysicists, Geologists and Engineers.* Second Edition. John Wiley & Sons, Ltd. England, 2005.

HOLLEBEN, C. R. C. *Determinação de porosidade e saturações de fluidos através da tomografia computadorizada de raios – X*. Dissertação de Mestrado em Engenharia de Petróleo. Universidade Estadual de Campinas, SP, 1993.

PORTO, A. D. *Estimação de propriedades petrofísicas de rochas sedimentares a partir de imagens microtomográficas de raios-X.* Tese de Doutorado em Engenharia de Processos. Universidade Federal de Campina Grande, PB, 2015. SOUSA, W. B. *Análise petrofísica de tufas carbonáticas em afloramento no município de Felipe Guerra, Bacia Potiguar – RN*. Monografia de graduação, Universidade Federal de Campina Grande, PB, 2014.

TIAB, D.; DONALDSON, E. C., 2004. Petrophysics. Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. Elsevier, 889 pp.

www.conepetro.com

www.conepetro.com .br