III Workshop de Engenharia de Petróleo

OBTENÇÃO E ESTUDO REOLÓGICO DE UM FLUIDO DE PERFURAÇÃO À BASE DE ÁGUA

Mariana Martins do Vale², Alfredo Ismael Curbelo Garnica¹, Fabíola Dias da Silva Curbelo¹ (Autores: Fonte Arial 12, centralizado, apenas iniciais maiúsculas, regular)

¹ Professores da Universidade Federal da Paraíba, Unidade Acadêmica de Engenharia Química – <u>alfredocurbelo@yahoo.com</u>, <u>fabioladias@yahoo.com</u>

² Aluna Bolsista do PRH-ANP -Universidade Federal da Paraíba, Unidade Acadêmica de Engenharia Química <u>—marianamartinsv@hotmail.com</u>

RESUMO

A seleção de fluidos de perfuração de poços de petróleo e gás natural, bem como a avaliação do desempenho desses fluidos durante a operação é muito importante no desenvolvimento na área de campo, como também, na fase exploratória. Para garantir uma perfuração segura e eficiente, esses fluidos têm por funções principais carrear o cascalho gerado na perfuração, resfriamento da broca, manutenção da estabilidade do poco, bem como o controle da pressão para evitar e entrada de fluxo de óleo, gás ou água proveniente das rochas perfuradas. Nesse âmbito, com um vasto estudo realizado a respeito dos aditivos químicos utilizados na preparação do fluido de perfuração afim de formulá-lo, este trabalho teve como foco, preparar e estudar a reologia de um fluido de à base de água para perfuração de poços de petróleo. Os parâmetros reológicos determinados foram: viscosidade aparente, viscosidade plástica, limite de escoamento e força-gel. Os resultados obtidos para estes parâmetros estão de acordo com as normas da PETROBRÁS N-2604. Os dados de tensão vs taxa de cisalhamento indicam a tendência de um comportamento plástico real do fluido proposto, sendo o modelo de Herschell- Buckley representativo dos dados experimentais. Observou-se também, uma diminuição da viscosidade aparente com o aumento da taxa de cisalhamento, aspecto característico do fluido proposto.

Palavras-chave: Fluido de perfuração, reologia, viscosidade aparente, Herschell-Buckley.

1. INTRODUÇÃO

O sucesso e conclusão de um poço de perfuração e o custo do projeto estão relacionados às propriedades dos fluidos de perfuração. Neste contexto, a escolha do fluido de perfuração e a preservação de suas propriedades impactam profundamente nos aspectos operacionais e econômicos do projeto.

Tecnicamente, a perfuração de poços consiste em um conjunto de operações necessárias para atravessar as

formacões geológicas a fim de se consequir prospecção а do hidrocarboneto. As rochas são perfuradas pela ação rotativa de uma broca existente na extremidade de uma coluna de perfuração e os fragmentos da rocha são removidos pela ação de um fluido de perfuração por bombeamento na coluna de perfuração. (THOMAS, 2004). Ο eficiente transporte dos cascalhos à superfície, bem como sua sustentação durante paradas de circulação as dependem significativamente do

I Congresso Nacional de Engenharia de

Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

comportamento reológico do fluido. (MAHTO,2004).

Os fluidos à base de água apresentam vantagens em relação aos outros por apresentar baixo custo, boa biodegradabilidade е baixo impacto ambiental. (DARLEY e GRAY, 1988) Nesse âmbito com um vasto estudo realizado sobre OS constituintes iá utilizados na preparação e de suas respectivas funções nos fluidos de perfuração, este trabalho teve por foco formular um fluido de perfuração a base de áqua, a partir de seus constituintes (adensante, viscosificante, controlador de pH, inibidor, redutor de filtrado) básicos e realizar o estudo reológico do mesmo.

2. METODOLOGIA

2.1 Preparação do Fluido de Perfuração à base de água

O fluido de perfuração foi preparado a partir da mistura dos aditivos (Tabela 1) que foram adicionados, um a um, sob agitação máxima (17000 rpm) em agitador Hamilton Beach(Figura 1), modelo 140, obedecendo a ordem descrita abaixo:

1. Pesa-se 0,5 g de goma xantana e 3,0 g de HP- amido com três casas decimais;

2. Adiciona-se 350 ml de água industrial no copo metálico do aparelho de dispersão, Hamilton Beach- Fann, Modelo 140;

3. Com as quantidades de aditivos pré-estipuladas devidamente pesadas, adiciona-se lentamente a goma xantana no copo metálico e agita-se por 10 min;

4. Em seguida, adicionam-se HPamido e agita-se por 10 min;

5. Por fim coloca-se 12 gotas de bactericida e agita-se por mais 5 minutos.

Tabela 1: Aditivos utilizados na preparação do fluido de perfuração.

P		
Aditivos	Faixa de	Função

	Concentração		
Água	1 bbl-eq	Fase contínua	
industrial			
Goma	0,5 ppb/1 ppb	Viscosificante	
xantana			
HP-amido	3,0 ppb	Redutor de	
		filtrado	
NaOH	0,5 ppb	Alcalinizante	
Argila	10 ppb	Viscosificante	
ativada			
NaCl	10 ppb	Eletrólito	
	(28.000)		
Triazina	0,3 ppb – 12	Bactericida	
	gotas		
Baritina	Peso 9,5 ppg	Adensante	

Figura 1: Misturador Hamilton Beach Fann- Modelo 140

2.2 Determinação da massa especifica do fluido

Para medida da massa específica do fluido de perfuração foi utilizada a balança de lama Fann modelo 140 (Figura 2). A metodologia de ensaio é simples, colocase o fluido ensaiado no recipiente

III Workshop de Engenharia de Petróleo

velocidades de 100 rpm, 6 rpm e 3 rpm nas obtenções dos valores de 100, 6, 3.

A partir dos valores dos ângulos de deflexão lidos, é possível a determinação das viscosidades aparente (VA), viscosidades plásticas (VP) e o limite de escoamento (LE), de acordo com a mesma norma:

1. A viscosidade aparente, em cP, corresponde ao valor medido na leitura a 600 rpm dividido por 2;

2. A viscosidade plástica, em cP, é a diferença das leituras obtidas a 600 e a 300 rpm;

3. O limite de escoamento, em N/m² é calculado como sendo a diferença entre a leitura a 300 rpm e a viscosidade plástica.

Além das três grandezas, é possível a determinação dos valores de forçasgéis conforme o seguinte procedimento:

1. Manter o fluido a velocidade de 600 rpm durante 15 segundos;

2. Manter em repouso em 10 segundos;

3. Alterar a velocidade para 3 rpm e realizar a leitura registrando a maior deflexão do indicador como gel inicial(G_0) em lbf/100pé²;

4. Manter o fluido em repouso em 10 segundos;

5. Alterar a velocidade para 3 rpm e realizar a leitura registrando a maior deflexão do indicador como gel inicial(G_{10}) em lbf/100pé²;

A força gel é um parâmetro de natureza reológica, que indica o grau de gelificação. É calculada como sendo a diferença entre as forças final e inicial. (GRAY & DARLEY, 1981). A força gel G_0 mede a resistência inicial para colocar o fluxo em fluido. Já a final, neste caso G_{10} mede a resistência do fluido para reiniciar o fluido quando este fica certo tempo em repouso. (MACHADO, 2002)

Através dos dados coletados, descritos neste item, é possível plotar as curvas de escoamento para o tratamento de dados

(copinho) da balança. A medida de densidade é obtida através do ajuste de uma peça móvel. Esta peça é deslocada, a fim de equilibrar a balança, tendo como referência um nível de bolha. A medida de densidade é então obtida na marcação presente no braço da balança onde a peça móvel equilibrou o conjunto.

Figura 2. Balança de lama Fann-Modelo 140

2.3 Estudo reológico do Fluido de Perfuração

Após 24 horas de repouso o fluido foi agitado durante 5 minutos em agitador mecânico Hamilton Beach, modelo 140 a velocidade de 17000 rpm. Em seguida o fluido foi transferido a um recipiente próprio para armazenamento da 0 durante as medicões. No amostra viscosímetro Fann 35A, foram lidos seis valores do ângulo de deflexão (torque) com taxas de cisalhamento variando de 5,1 a 1021,8 s⁻¹. A leitura das medidas foi realizada da seguinte forma, baseando-se na Norma PETROBRÁS N-2605 (1998):

1. Após 2 minutos a partir do ligamento do aparelho a velocidade de 600 rpm é lido o valor de $_{600}$, isto é, a deflexão a 600 rpm.

2. Altera-se a velocidade de rotação para 300 rpm e após 15 segundos, é lido o valor de ₃₀₀;

3. A velocidade é então reduzida a 200 rpm e espera-se estabilizar para efetuar a leitura de ₂₀₀. O mesmo procedimento foi utilizado para as

III Workshop de Engenharia de Petróleo

de forma a caracterizar o comportamento reológico do fluido estudado.

A partir das deflexões lidas (), podese calcular a tensão cisalhante (Equação 1) e utilizando os valores das velocidades de rotação, calcula-se a taxa de cisalhamento () (Equação 2). O valor da tensão de cisalhamento (), em Pascal, e o valor da taxa de cisalhamento (), em s⁻¹, são: (SHIROMA, 2012).

τ=0,51. [1] =1,703.N [2]

Os valores de viscosidade referentes ao gráfico Log(μ , viscosidade aparente) vs Log (γ , taxa de cisalhamento) são calculados a partir da Equação 3, utilizando os valores de deflexão e velocidade de rotação, obtidos do estudo reológico.(SHIROMA,2012)

$$\mu = 300.$$
 /N [3]

2.4 Modelo de Herschell- Buckley

O Modelo de Herschell- Buckley foi utilizado para representar os dados experimentais, obtidos no item 2.2. (BENNETT E MAYERS, 1982). A equação que representa este modelo é descrita a seguir:

$$\tau = K\gamma^* + \tau_0 \tag{4}$$

Em que, K= índice de consistência; n= índice de comportamento; τ_0 = tensão de corte inicial.

Os parâmetros K e n do modelo foram determinados a partir do intervalo convencional 300 e 600 rpm, nas medidas convencionais citadas na norma PETROBRÁS N-2605:

1. Indice de comportamento, n:

$$n = \frac{\log(\tau_{600} - \tau_{300} / \tau_{300} - \tau_0)}{\log(\frac{\gamma_{600}}{\gamma_{300}})}$$
2. Índice de consistência, K:

$$K = \frac{\tau - \tau_0}{\gamma^{\pi}}$$

O valor de τ_o (tensão inicial de corte) foi determinado por extrapolação do gráfico tensão vs taxa de cisalhamento.

3. RESULTADOS E DISCUSSÃO

3.1 Massa específica

Inicialmente, foi determinada a massa especifica do fluido, onde esta medida para o fluido obtida por meio da balança de lama, foi de 9,1lb/gal. Esse valor está de acordo com a Norma PETROBRÁS N-2604 (1998), visto que a massa especifica deve estar em um intervalo entre 8,34 a 16,68 lb/gal.

3.2 Parâmetros reológicos referentes ao fluido formulado

A tabela 2 representa os resultados dos parâmetros reológicos referentes ao fluido formulado.

Tabela 2-Resultados dos parâmetros referentes ao fluido formulado avaliados perante à norma PETROBRÁS N-2604.

Parâmetros	Valores	Norma PETROBRÁS N-2604	
Viscosidade	19,0 cP	mínimo de	
aparente		15,0 cP	
Viscosidade	9,0 cP	mínimo de	
plástica		4,0 cP	
Limite de	20,0	valor máximo	
escoamento	lbf/100pé ²	igual a 15*VP	
Gel inicial	9,0	mínimo de 7	
(G ₀)	lbf/100pé ²	lbf/100 pé ²	
Gel final (10,0	entre 10 e 15	
G ₁₀)	lbf/100pé ²	lbf/100 pé ²	

De acordo com as normas especificadas já mencionadas no trabalho, os valores das viscosidades plásticas, das viscosidades aparentes e o limite de escoamento, gel inicial e gel final estão dentro da faixa dos padrões citados na norma.

I Congresso Nacional de Engenharia de

Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

de veis

3.3 Curvas de tensão e deformação

Figura 3: Gráfico (tensão de cisalhamento, τ versus taxa de deformação, γ) da curva de fluxo para o fluido.

Observando a Figura 3, percebe-se uma tensão de corte inicial e uma tendência a um comportamento plástico real do fluido (ou fluido pseudoplástico com tensão de corte inicial), o que é confirmado posteriormente pelo modelo de Herschell-Buckley(KELESSIDIS,2006).

A Figura 4 mostra o gráfico referente ao modelo de Herschell-Buckley sobreposto à curva previamente elaborada por meio de dados experimentais.

Figura 4: Ajuste dos dados experimentais pelo modelo de Herschell – Buckley.

A tabela 3 mostra os valores dos parâmetros obtidos para o modelo de Herschell- Buckley.

> Tabela 3: Parâmetros do modelo de Herschell-Buckley.

	Parâmetros reológicos		
Fluido de Perfuração	n	K(Pa. s ⁿ)	τ ₀ (Pa)
	0,6976	0,1164	5,7672

A partir da Figura 5, pode-se observar que os valores teóricos da tensão obtidos pelo modelo de Herschell-Buckley representam significativamente os resultados das tensões de cisalhamento obtidas experimentalmente.

Figura 5- Gráfico referente ao τ experimental versus τ teórico.

A Figura 6 mostra um decréscimo de viscosidade quando a taxa de cisalhamento é aumentada, exibindo assim, a pseudoplasticidade do fluido.

Figura 6- Gráfico da Log μ (viscosidade) versus Log γ (taxa de cisalhamento).

Este comportamento é importante para o fluido de perfuração, visto que com o aumento da velocidade de escoamento do fluido dentro da coluna de perfuração, tem-se um aumento da taxa de cisalhamento, e consequentemente uma diminuição da viscosidade deste fluido, pois dentro da coluna necessita-se de uma certa facilidade do fluido escoar. Quando o fluido de perfuração atinge a formação, na região situada na ponta da broca, ocorre uma redução brusca de velocidade e, portanto, da taxa de cisalhamento, levando a um aumento da viscosidade do fluido, que por sua vez atende a exigência de transportar os cascalhos até a superfície, liberados pela broca durante a perfuração.

4. CONCLUSÕES

1) Os parâmetros reológicos obtidos (viscosidade aparente, viscosidade plástica, limite de escoamento, gel inicial e final) para o fluido de perfuração formulado estão dentro dos padrões da norma PETROBRÁS N-2604.

2) O fluido de perfuração obtido foi classificado como plástico real e o modelo de Herschell – Buckley mostrou-se satisfatório na representação dos dados experimentais do estudo reológico deste fluido.

4. AGRADECIMENTOS

Ao apoio financeiro da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP –, da Financiadora de Estudos e Projetos – FINEP – e do Ministério da Ciência, Tecnologia e Inovação – MCTI por meio do Programa de Recursos Humanos da ANP para o Setor Petróleo e Gás – PRH-ANP/MCTI e ao Laboratório de I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

Cimentos – LABCIM/UFRN pelo fornecimento dos aditivos estudados.

6. REFERÊNCIAS BIBLIOGRÁFICAS

ALBERTO, J.T.A. **Análisis de los fluidos de perforación em la indústria petrolera**.2010,109p.Tese de Doutorado. Universidade de Vera Cruz, Vera Cruz.

BENNETT, C. O.; MEYERS, J.E. – Fenômenos de Transporte: quantidade de movimento, calor e massa- McGraw-Hill do Brasil- São Paulo, 1982.

DARLEY, H.C. H & GRAY, G.R. Composition and Properties of oil well drilling fluids, p.509, 1985.

KELESSIDIS, V.C.; MAGLIONE, R.: TSAMANTAKI, C.;ASPIRTAKIS, Υ. Optimal determination of rheological parameters for Herschel-Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration during drilling-Journal rates of Petroleum Science and Engineering 53: 203-224, 2006.

MACHADO, J. C. Fundamentos e Classificação de Fluidos Viscosos. Reologia e Escoamento de Fluidos-Ênfase na indústria do petróleo. Editora Interciência. Rio de Janeiro, 2002. pg 1-40.

MAHTO, V.; SHARMA, V. P. – **Rheological study of water based oil well drilling fluid** – Journal of Petroleum Science Engineering 45: 123-128 2004.

PETROBRAS – Ensaio de viscosificante para fluido de perfuração à base de água na exploração e produção de petróleo-Especificação, N-2604, 1998.

III Workshop de Engenharia de Petróleo

PETROBRAS – Ensaio de viscosificante para fluido de perfuração à base de água na exploração e produção de petróleo-Especificação, N-2605, 1998.

SHIROMA, H.P. Estudo do comportamento reológico de suspensões aquosas de bentonita e cmc: influência da concentração de NaCI.2012, 114p. Dissertação (mestrado de Engenharia química).Universidade de São Paulo, São Paulo.

THOMAS, J. E. *Fundamentos de Engenharia de Petróleo*. Interciência, 2004.