III Workshop de Engenharia de Petróleo

SÍNTESE DE FERRITA DO TIPO Ni_{0,5}Zn_{0,5}Fe₂O₄ E UTILIZAÇÃO COMO CATALISADOR EM REAÇÃO DE ESTERIFICAÇÃO DO ÓLEO DE SOJA PARA OBTENÇÃO DE BIODIESEL

Nathalia Oliveira Araújo¹; Joelda Dantas²; Kleberson Ricardo de Oliveira Pereira³; Ana Cristina Figueiredo de Melo Costa⁴

RESUMO

O desenvolvimento da sociedade e consequente avanço científico e tecnológico contribuem significativamente para o aumento da poluição, o que torna os problemas ambientais uma questão bastante preocupante em todo o mundo. Atualmente, os biocombustíveis têm recebido crescente destaque no mercado nacional e mundial, devido à constante preocupação com o meio ambiente e com o aquecimento global proveniente da poluição do ar ocasionada pela queima dos combustíveis fósseis. Entre os biocombustíveis está o biodiesel, que pode ser obtido por diferentes processos a partir de diversas fontes lipídicas renováveis que reagem com um álcool de baixo peso molecular na presença de um catalisador. Neste estudo, catalisador Ni_{0.5}Zn_{0.5}Fe₂O₄ foi sintetizado por reação de combustão para obtenção de biodiesel via esterificação de óleo de soja. A difração de raios X indicou a formação da fase espinélio invertido e o espectro de infravermelho revelou a presença das bandas vibracionais 586, 1381, 1628, 2352, 2922, 3147 e 3457 cm⁻¹. As micrografias da nanopartícula magnética revelaram formação de aglomerados na forma de blocos irregulares e com baixa porosidade. O biodiesel obtido apresentou conversão de 27,28% e 96,01% quando se utilizou temperaturas reacionais de 140°C e 180°C, respectivamente.

Palavras-chave: nanopartícula magnética, reação de combustão, esterificação, biodiesel, biocombustível.

1. INTRODUÇÃO

As crescentes preocupações com o meio ambiente, principalmente com o aquecimento global proveniente da poluição do ar ocasionada pela queima dos combustíveis fósseis e as previsões de que as reservas de energias fósseis não ultrapassem os próximos 50 anos, têm incentivado a busca por novas fontes de combustíveis alternativos, tais como os biocombustíveis.

Dentre biocombustíveis os existentes, o biodiesel tem alcançado grande econômico destaque tecnológico, pelo seu potencial em substituir o diesel de petróleo e devido a características intrínsecas, biodegradável, possuir baixa emissão de gases poluentes e ser proveniente de fontes renováveis.

Atualmente existem 58 plantas produtoras de biodiesel autorizadas pela ANP para operação no país,

¹ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia Mecânica – nathaliaoaraujo @gmail.com

² Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia de Materiais – joeldadantas @yahoo.com.br

³ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia de Materiais – klebersonric @usp.br

⁴ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia de Materiais – anacristina @dema.ufcg.edu.br

III Workshop de Engenharia de Petróleo

correspondendo a uma capacidade total autorizada de 21.163,51 m³/dia [ANP, 2014].

1.1. Esterificação

Várias alternativas têm sido reportadas para melhorar o uso dos óleos vegetais em motores do ciclo diesel. Dentre elas a esterificação, que consiste na reação de uma fonte lipídica com um álcool na presença de um catalisador. Como produto final tem-se éster alcoólico e água.

Conforme ilustrada na Figura 1, esterificação é a obtenção de ésteres, a partir da substituição de uma hidroxila (-OH) de um ácido (ácido graxo) por um radical alcoxíla (-OR) de álcool de cadeia curta em presença de catalisador, dando origem a monoésteres de ácidos graxos. [SUAREZ et al., 2007].

Ácido carboxílico Álcool Éster Figura 1: Reação de esterificação. FABIANO et al., [2007].

O processo de esterificação ocorre preferencialmente com alcoóis de baixo peso molecular, sendo metanol o mais utilizado pelo custo. [FABIANO et al., 2007].

1.2. Catalisadores para biodiesel

Industrialmente, а produção biodiesel resulta de um processo catalítico homogêneo realizado com metanol e, em geral, na presença de hidróxido de sódio ou potássio como catalisador. Estes catalisadores possuem baixo custo e fornecem altos níveis de conversão do éster triglicerídeo ao metílico correspondente [MA, HANNA, 1999]. Por outro lado, possuem várias desvantagens [VICENTE et al, 2004; FUKUDA et al, 2001], entre as quais, pode-se destacar a

formação sabão tanto pela de neutralização de ácidos graxos livres presentes óleo quanto pela no saponificação do triglicerídeo, a difícil remoção destes catalisadores, que encarece 0 produto final. impossibilidade de reciclagem, a geração de grande quantidade de rejeito, a dificuldade de recuperação da glicerina e a presença de água e ácidos graxos livres, que interferem na reação.

Daí o interesse em substituir esses catalisadores catalisadores por heterogêneos, uma vez que estes são de procedimentos operacionais mais fáceis e reduzem significantemente a poluição ambiental. Pinto et al. [2005] publicaram uma revisão apresentando claramente esta tendência e os catalisadores que vêm sendo citados na literatura. Dentre as vantagens do emprego de catalisadores heterogêneos, pode-se destacar: facilidade de separação e purificação do biocombustível do meio reacional; a recuperação do catalisador por filtração ou centrifugação; a recuperação do excesso de álcool por destilação e a separação da glicerina do biocombustível decantação; reutilização por а catalisador heterogêneo e a não produção de sabão quando este é usado.

Dos catalisadores heterogêneos citados atualmente na literatura, os materiais cerâmicos representam importantes produtos comerciais para indústrias, que por sua vez tem se destacado, entre outros, para obtenção destes catalisadores.

1.3. Uso de ferritas para obtenção de biodiesel

Os catalisadores sólidos possuem várias vantagens sobre os ácidos minerais e enzimas, devido a sua atividade, seletividade, tempo de uso, facilidade na sua remoção e reuso [TIAN et al., 2010]. Estas características tornam as nanopartículas magnéticas extremamente atrativas para aplicações

III Workshop de Engenharia de Petróleo

catálise, principalmente pelas em elevadas áreas de superfícies que fazem partículas serem superparamagnéticas, o que segundo Tristão [2010] provoca um aumento significativo na sua reatividade. desempenhando um papel eminente em processos químicos, pelo aumento dos sítios catalíticos na superfície catalisador.

Além de todas as características citadas, o uso deste nanomaterial como catalisador possibilita a fácil separação do produto reacional por atração magnética, por intermédio da aplicação de um campo magnético (imã), podendo ser regenerado e reutilizado várias vezes nas etapas de químicos processos como transesterificação esterificação. е Α remoção das nanopartículas em suspensão do meio em que estão, por separação magnética, é relativamente rápida e de fácil operação, requerendo equipamentos simples, eliminando da centrifugação ou [SAFARIK e SAFARIKOVÁ, 1999].

Associado a estas vantagens, a ferrita Ni-Zn é facilmente obtida por métodos de processamento economicamente viáveis e com características nanoestruturais.

Diferentes composições de ferritas tipo espinélio vêm sendo estudadas avaliando seu uso nos processo de esterificação e transesterificação via rota metílica e etílica para produção de biodiesel a partir de oleaginosas como a soja.

Barbosa et al. [2012], através da esterificação do óleo de soja, utilizando ferritas do tipo Ni-Zn, alcançou uma conversão aproximada de 90%.

Assim, o objetivo deste trabalho é avaliar o uso da NPM mista Ni-Zn como catalisador na esterificação do óleo de soja para produção de biocombustível.

2. METODOLOGIA

2.1. Materiais

Os reagentes utilizados na síntese por combustão da nanopartícula magnética e obtenção do biodiesel foram:

- nitrato de ferro nonohidratado Fe(NO₃)3 9H₂O 99%;
- nitrato de zinco hexahidratado Zn(NO₃)2.6H₂O 99%;
- nitrato de níquel hexahidratado -Ni(NO₃)2.6H₂O 98%;
- uréia (combustível).
- metanol comercial com 98% PA;
- ácido oleico;
- óleo de soja comercial.

2.2. Síntese dos nanocatalisadores por reação de combustão

Para obtenção dos nanocatalisadores magnéticos com composição (Ni-Zn)Fe₂O₄, os reagentes metálicos combustível foram е 0 misturados diretamente em recipiente de aço inox desenvolvido especificamente para síntese de combustão [COSTA e recipiente KIMINAMI, 2012]. Ο submetido ao aquecimento em placa com resistência até atingir a auto-ignição (combustão).

A composição inicial da solução foi calculada baseada na valência total dos reagentes oxidantes e redutores, baseado na teoria dos propelentes e explosivos conforme descrito por Jain et al., [1981].

A amostra sintetizada, que foi obtida sob a forma de flocos porosos, foi peneirada em malha 325mesh (abertura 45 mm).

2.3. Processo catalítico

Para as reações de esterificação, inicialmente misturou-se 15% de ácido oleico ao óleo de soja. A esta solução foi adicionado álcool metílico na proporção molar óleo:álcool de 1:15 e 3% de catalisador. As reações foram realizadas

III Workshop de Engenharia de Petróleo

em reator de aço inox, sob agitação magnética por quatro horas, onde variouse a temperatura da reaçõ, que foram de 140°C e 180°C. As amostras foram caracterizadas por cromatografia gasosa para verificação do teor de éster.

3. RESULTADOS E DISCUSSÃO

Na Figura 2 está apresentada a curva de difração de raios-X para a nanopartícula magnética NiZn.

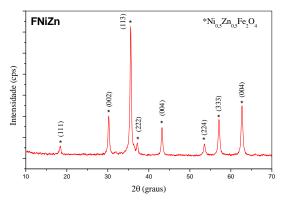


Figura 2: Curvas de difração de raios-X da nanopartícula magnética Ni_{0.5}Zn_{0.5}Fe₂O₄.

O resultado mostra apenas a formação da fase espinélio invertido. Este resultado se encontra de acordo com o encontrado por Lazarevic et al. [2015] e Džunuzovi et al. [2015] e confirma que a reação de combustão foi bem sucedida no sentido de formar um material cristalino.

Na Figura 3 encontram-se apresentados os espetros de FTIR da nanopartícula magnética NiZn.

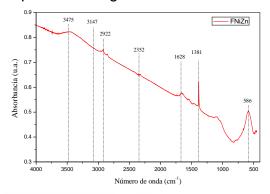


Figura 3: Espectro de infravermelho da nanopartícula magnética Ni_{0.5}Zn_{0.5}Fe₂O₄.

Com base nestes resultados verificou-se a presença das bandas vibracionais 586, 1381, 1628, 2352, 2922, 3147 e 3475 cm⁻¹ para a amostra de nanopartícula magnética.

- A banda 586 cm⁻¹ refere-se ao estiramento intrínseco da ligação Fe-O-. Segundo Shirsath et al. [2010], esse valor pode variar conforme às diferentes distâncias da ligação Fe-O- nos sítios tetraédricos e octaédricos. Esta variação pode estar relacionada às condições da reação, tamanho do grão e densidade do material.
- A banda vibracional 1381 cm⁻¹ é atribuída à presença do íon NO³⁻;
- A banda 1628 cm⁻¹ refere-se à água adsorvida;
- A banda vibracional a 2352 cm⁻¹ se refere à presença do CO₂ atmosférico;
- As bandas 2922 e 3475 cm⁻¹ decorrem do resíduo de carbono proveniente do agente complexante (ureia).

Na Figura 4 é apresentada a morfologia da nanopartícula magnética NiZn, obtida por microscopia eletrônica de varredura (MEV).

De acordo com Costa [2003], verifica-se que o tamanho reduzido das partículas levou à formação de aglomerados forma de blocos na irregulares e com baixa porosidade, provavelmente devido a pouca liberação de gases de combustão durante a reação. Estes aglomerados, por sua vez, são constituídos por partículas finas ligadas por forças fracas, o que torna este material de fácil desaglomeração, tal como descrito por Dantas [2012].

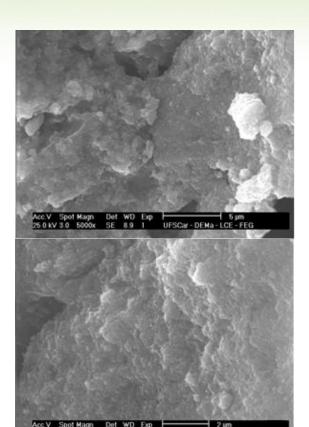


Figura 4: Morfologia por MEV da nanopartícula magnética Ni_{0,5}Zn_{0,5}Fe₂O₄ com aumentos de 5000x e 10000x.

Na tabela 1 estão apresentados os resultados para a conversão de biodiesel obtido via esterificação metílica do óleo de soja.

Tabela 1 – Resultados para conversão de biodiesel.

Temperatura	Conversão
140°C	27,28%
180°C	96,01%

Os resultados apontam para uma melhora significativa na conversão de ésteres para um aumento de 40°C na temperatura de reação.

4. CONCLUSÕES

A síntese por reação de combustão foi eficiente na produção de nanopartículas magnéticas. Os resultados das caracterizações da nanopartícula

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

revelaram a formação do material com características que a fazem promissora para atividade catalítica em reação de esterificação metílica de óleo de soja para obtenção de biodiesel. A temperatura desta reação influenciou fortemente o resultado, sendo a temperatura de 180°C mais eficaz, chegando a 96,01% da conversão de ésteres.

5. AGRADECIMENTOS

Ao Programa Institucional de Bolsas de Iniciação Científica – PIBIC/CNPq/UFCG.

Ao Laboratório de Síntese de Materiais Cerâmicos – LabSMac/UAEMa/UFCG

6. REFERÊNCIAS BIBLIOGRÁFICAS

Boletim mensal do biodiesel - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis - Dezembro 2014 Disponível em:< http://www.anp.gov.br/?pg=73584&m=&t1 =&t2=&t3=&t4=&ar=&ps=&cachebust=142 2360133732>. Acesso em 28/01/2015.

BARBOSA, D. C.; MENEGHETTI, S. M. P.; MENEGHETTI, M. R.; DANTAS, J.; CUNHA, R. B. L.; COSTA, A. C. F. M. Desenvolvimento de novos sistemas catalíticos a base de óxidos ternários com propriedades magnéticas, para produção de biodiesel por esterificação. XXIII Congresso Iberoamericano de Catálises, 2012.

COSTA, A. C. F. M. e KIMINAMI, R. H. G. A. *Dispositivo para produção de nanomateriais cerâmicos em larga escala por reação de combustão e processo contínuo de produção dos nanomateriais*. Depósito de patente. Revista de Propriedade Industrial – RPI, depositada em 25/01/2012, recebendo o nº BR 10 2012 002181-3.

III Workshop de Engenharia de Petróleo

COSTA, A. C. F. M., MORELLI, M. R., KIMINAMI, R. H. G. A. *Ferritas Ni-Zn: síntese por reação de combustão e sinterização.* Cerâmica, vol.49, Nº 311, 2003.

DANTAS, J. Síntese e avaliação do desempenho de catalisadores a base de ferritas ni-zn dopada com cobre na reação de transesterificação de óleo vegetal em biodiesel. 2012, 126p. Dissertação de Mestrado, Universidade Federal de Campina Grande, Programa Graduação em Ciência e Pós Engenharia de Materiais, Campina Grande-PB.

DŽUNUZOVI, A. S., ILI, N. I., VIJATOVI PETROVI, M. M., BOBI, J. D., STOJADINOVI, B., DOH EVI-MITROVI, Z., STOJANOVI, B. D. Structure and properties of Ni–Zn ferrite obtained by auto-combustion method. Journal of Magnetism and Magnetic Materials, Nº 374, p.245–251, 2015.

FUKUDA, H.; KONDO, A.; NODA, H. *Biodiesel fuel production by transesterification of oils*. Journal of Bioscience and Bioengineering, v. 92, p. 405-416, 2001.

JAIN, S. R.; ADIGA, K. C. *A new approach to thermo chemical calculations of condensed fuel-oxidizer mixture Combustion*. Flame, v.40, p. 71-79, 1981.

LAZAREVIC, Z. Z., MILUTINOVIC, A. N., JOVALEKIC, C. D., IVANOVSKI, V. N., DANEU, N., MADAREVIC, I., ROMCEVIC, N. Z. Spectroscopy investigation of nanostructured nickel—zinc ferrite obtained by mechanochemical synthesis. Materials Research Bulletin N°63, p.239–247, 2015.

MA, F.; HANNA, M. A. **Biodiesel Production: A Review.** Bioresource Technology, v. 70, p. 1-15, 1999.

PINTO, A. C.; GUARIEIRO, L. L. N.; REZENDE, M. J. C.; RIBEIRO, N. M., TORRES, E. A.; et al. *Biodiesel: an overview.* Journal of Brazilian Chemistry Society, vol. 16, No 6b, p.1313-1330, 2005.

SAFARIK, I.; SAFARIKOVÁ, M. *Use of magnetic techniques for isolation of cells. Journal of Chromatography* B, v.722, p.33-35, 1999.

SHIRSATH, S. E.; TOKSHA, B. G.; KADAM, R. H.; PATANGE, S. M.; MANE, D. R.; JANGAM, G. S.; GHASEMI, A. Doping eFMctof Mn²⁺ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. Journal of Physics and Chemistry of Solids, v. 71, p.1669-1675, 2010.

SUAREZ, P. A. Z.; SANTOS, A. L. F.; RODRIGUESE, J. P.; ALVES, M. B. *Biocombustíveis a partir de óleos e gorduras: desafios tecnológicos para viabilizá-los*. Química Nova, vol. 32, Nº 32, p. 768-775, 2009.

TIAN, Q.; LI, J.; WANG, Q.; WANG, S.; ZHANG, X. Structure and magnetic properties of Ni_{0.11}Zn_xCo_{0.03}Fe_{2.86-x}O₄ ferrite. Films deposited on Ag-coated glass substrates by wet chemical method. Thin Solid Films. v. 518, Issue 1, p. 313-318, 2010.

TRISTÃO, J. C. Materiais nanoestruturados magnéticos à base de ferro recobertos por carbono: síntese, caracterização e aplicações. 2010, 200p. Tese de Doutorado, Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Química. Belo Horizonte - MG.

VICENTE, G.; MARTÍNEZ, M.; ARACIL, J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, v. 92, p. 297-305, 2004.