

CIÊNCIA E ANIMAÇÃO: UTILIZANDO 'CELLS AT WORK!' NO ENSINO DE BIOLOGIA

André Luiz da Silva Lima Júnior 1

INTRODUÇÃO

Cells at Work! (originalmente, Hataraku Saibō, sem tradução para o Português Brasileiro) é uma série de mangá japonês escrito e ilustrado por Akane Shimizu. Sua publicação iniciou em 2015 e teve finalização em 2021; foi distribuído pela revista mensal Shonen Sirius da Editora Kodansha. O mangá totaliza 6 (seis) volumes, entretanto, a publicação em versão física ainda não ocorreu no Brasil, isto posto, os leitores frenéticos da referida HQ o fazem em sites on-line.

O mangá recebeu uma adaptação animada para a televisão pelo estúdio japonês David Productions, em 2018. A primeira temporada conta com 13 (treze) episódios e a segunda possui 8 (oito) episódios, fechando a narrativa da história. O anime teve produção de Yuma Takahashi e direção de Kenichi Suzuki. No Brasil, o anime pode ser assistido por serviços de streaming como Crunchyroll.

Em razão do aumento da utilização da linguagem audiovisual no cotidiano de crianças e adolescentes nos últimos anos, é imprescindível que educadores acompanhem essas mudanças, objetivando aprimorar o processo de ensino-aprendizagem. O aproveitamento da cinematografía como material pedagógico é uma tática incentivada pela Base Nacional Comum Curricular (Brasil, 2017) que pretende difundir a cultura brasileira aos estudantes do ensino fundamental e médio intermediados pelo cinema.

É interessante ressaltar, ainda, que a maioria das escolas da rede pública brasileira não possui laboratórios equipados (em alguns casos, não possui laboratório algum) capazes de prover aos estudantes aulas científicas práticas, tendo isso em vista, a inserção do cinema de animação no ambiente escolar pode trazer inúmeros benefícios, tanto por ser um tipo de produto comum à realidade dos alunos, quanto por ser acessível: os animes podem ser baixados facilmente na internet. E é por isso que esta proposta de trabalho visa mostrar a narrativa em anime, especificamente, a obra Cells at Work! como base pedagógica para o ensino da biologia à alunos de ensino médio.

¹ Mestrando em Ciências Agrárias na Universidade Estadual do Maranhão - UEMA; Especialista em Zoologia pela Universidade Metropolitana; Graduado em Ciências Biológicas pela Universidade Estadual da Região Tocantina do Maranhão - UEMASUL - andre23jr@gmail.com

A adaptação cinematográfica em anime Cells at Work!, foco deste trabalho, narra a história de células antropomorfizadas que trabalham dentro de um corpo humano. A protagonista, AE3803, representa um glóbulo vermelho que precisa carregar oxigênio e gás carbônico através da corrente sanguínea. Ela faz amizade com U-1146, um glóbulo branco, célula do sistema imune responsável pela defesa contra bactérias e fungos.

De acordo com os Parâmetros Curriculares Nacionais (Brasil, 2000), no que diz respeito a contextualização sociocultural, é importante que o aluno desenvolva a capacidade de identificar aspectos biológicos relacionados aos aspectos culturais. Nesse sentido, o anime Cells at Work! mostra-se um útil material pedagógico na construção do conhecimento científico, dado sua precisão/ referencial científica. Dessa maneira, esta pesquisa dedicou-se a propor uma análise de sete episódios de Cells at Work! inferindo seu valor pedagógico.

METODOLOGIA (OU MATERIAIS E MÉTODOS)

A pesquisa é de natureza qualitativa e usou os métodos bibliográfico e documental para seu desenvolvimento. Ambicionando arquitetar indicativos metodológicos para o uso do cinema em sala de aula, esta pesquisa utilizará do citado anime como ponto de partida. Dos 21 (vinte e um) episódios que o anime contém, um episódio episódio foi selecionado como tema central de estudo. O primeiro episódio, intitulado Pneumococcus, apresenta AE3803, a personagem principal. Na diegese ela é atacada por bactérias do grupo Pneumococcus, porém é salva por U-1146. Ainda que haja algumas alegorias literárias - naturais das linguagens audiovisuais-, o episódio, assim como toda série, serve-se de elementos das ciências biológicas: células do sistema sanguíneo, células do sistema imune e corpos estranhos, nesse caso, as bactérias.

Assim, o objetivo desta análise é perceber como os assuntos abordados no referido anime contribuem para o desenvolvimento, crescimento, aprendizado e percepção do aluno, mais especificamente, ao tratar sobre o sistema imunológico e sanguíneo em diferentes situações, procurando inferir se o processo interdisciplinar tendo como base o audiovisual, pode acrescentar ainda mais no processo de ensino-aprendizagem da biologia.

RESULTADOS E DISCUSSÃO

O episódio 1 (um) da primeira temporada, intitulado Pneumoccoccus, inicia apresentando a protagonista: AE3803. A personagem representa, na realidade, um eritrócito (hemácia) novata e ainda não familiarizada com as veias sanguíneas. Hall (2011, p. 437) afirma que a principal função de um eritrócito é carregar a "hemoglobina que por sua vez, leva o oxigênio dos pulmões para os tecidos". No decorrer do episódio, AE3803 é atacada por uma bactéria do grupo *Pneumococcus*, causadora da pneumonia.

De nome científico Streptococcus pneumoniae essa bactéria gram-positiva possui formato de lança e arranja-se em pares, os diplococos. Aloja-se no trato respiratório humano, causando inflamações no local (Levinson, 2010, p. 488). Na narrativa, a bactéria esconde-se em um pacote carregado pela AE3803 até chegar no pulmão, mimetizando a bactéria da vida real, que se esconde em hemácias para permanecer indetectável pelo sistema imune, e assim atacar o sistema respiratório. É curioso que no episódio a bactéria tem uma espécie de superpoder - a cápsula bacteriana - usada para se defender do neutrófilo U-1146, contudo, essa cápsula na realidade serve para proteção e dificulta a fagocitose dos glóbulos brancos e a ligação de anticorpos à bactéria.

Quando AE3803 é agredida pela bactéria, U-1146, um glóbulo branco, aparece para protegê-la. Os glóbulos brancos, ou leucócitos, representados no anime por U-1146, são as principais células do sistema protetor, agindo rapidamente e movendo-se para infecções e inflamações, "promovendo rápida e potente defesa contra agentes infecciosos" (Hall, 2011, p. 447). Na diegese, U-1146 é um neutrófilo e trabalha para a Divisão de Neutrófilos junto a outros amigos, patrulhando as veias sanguíneas em busca de invasores, tais como germes e vírus.

É relevante perceber que na construção narrativa de Cells at Work! as personagens AE3803 e U-1146 representam, respectivamente, um glóbulo vermelho e um glóbulo branco. Ambos são apresentados ao espectador utilizando das cores que os definem. No caso de AE3803, ela usa uma roupa em tons avermelhados e possui o cabelo ruivo, o que faz sentindo, visto que a hemoglobina é responsável pela cor vermelha do sangue. Ainda, ela usa uma boina que se assemelha ao formato côncavo de uma hemácia. Já as vestes, o cabelo e a pele de U-1146 são bastante pálidas e

esbranquiçadas, relembrando o tempo todo a célula que ele simboliza - um glóbulo branco.

A imagética empregada em tais personagens astutamente destaca o papel fisiológico que o anime busca retratar através delas. Ao aplicar esse episódio no contexto pedagógico e ensinar a partir dele as definições de glóbulo vermelho e glóbulo branco, naturalmente os alunos elevarão a sua memória às figuras de AE3803 e U-1146. É de praxe pedagógica utilizar-se de imagens para fixar ideias, e nesse caso, as cores utilizadas em ambos os protagonistas frisam suas funções, ajudando os alunos a fixar o ponto principal do conteúdo.

Enquanto AE3803 e U-1146 passeiam por entre os vasos sanguíneos, a Divisão dos Linfócitos T Citotóxicos (killer), representada por uma força militar, está à procura da bactéria para exterminar qualquer agente patógeno. Os soldados são bastante semelhantes uns dos outros, simbolizando os linfócitos sensibilizados idênticos. Ainda sobre a detecção de agentes estranhos, o personagem U-1146 (também uma célula do sistema imune) possui um receptor em seu boné capaz de reconhecer "o agente causador da injúria por receptores de membrana" (Silva, 2011, p. 21).

CONSIDERAÇÕES FINAIS

Dado a sua natureza técnico-científica e ao sistema educacional brasileiro defasado e sucateado, deficiente de laboratórios equipados, a matéria de biologia acaba sendo apresentada aos alunos na grande maioria das vezes somente no formato explicativo/avaliativo. Consequentemente tirando o interesse dos estudantes, diminuindo e prejudicando seu aprendizado, afastando-os da ciência. Em contramão a isso, a narrativa cinematográfica em anime vem se tornando cada dia mais presente no cotidiano dos jovens brasileiros. Como educadores sedentos em ensinar da maneira mais benéfica possível, é relevante e até mesmo necessário procurar inserir-se na realidade dos alunados, buscando encontrar um ponto de partida a eles acessível e compreensível, neste caso, o anime japonês.

O presente trabalho realizou a análise de um episódio da animação Cells at Work!, procurando inferir sua eficácia no processo de ensino-aprendizagem. Observou-

se que os assuntos levantados no episódio dão ao educador a oportunidade de levantar questionamentos relevantes e realizar aulas, atividades e exercícios fora do que é costumeiro, resultando em um melhor desempenho dos alunos. Percebeu-se também que o referido anime é "útil para o ensino das células e como elas funcionam dentro do corpo humano, atraindo... a atenção dos alunos" (Barros, 2021, p. 35) e não apenas isso, os episódios trabalhados tratam de assuntos difíceis, como sistema circulatório, sistema imune, patógenos como vírus, bactérias e células tumorais, de forma simplificada e criativa. "Neste sentido, podemos entender os animes como um potencial a ser utilizado no processo educativo". (Lima, 2019, p. 95).

Ainda sobre os pontos positivos alcançados com a utilização do cinema de animação em sala de aula, Silva (2011, p. 142) afirma que "o anime traz um contexto de divertimento... melhorando o ambiente, estimulando a participação, aguçando a curiosidade e favorecendo o desenvolvimento de habilidades conceituais." *Cells at Work!* é construído a partir de linguagens verbais e não verbais muito bem definidas: as cores, os diálogos, os cenários e a formação das personagens fazem uma leitura verídica com a ciência, ainda, "o desenho traz à tona a criatividade, o entretenimento e, ainda, estabelece conexões entre o conteúdo e a realidade vivida pelos estudantes." (Silva, 2011, p. 142).

Portanto, *Cells at Work!* de Akane Shimizu é uma ferramenta rica para o ensino da biologia à estudantes do ensino médio (e porque não dizer também para o ensino fundamental). Ao invés de aulas enfadadas e repetitivas, a utilização do anime possibilita o acesso ao divertimento, permitindo uma educação inovadora e produtiva. É papel do professor estar sempre atualizando as suas metodologias, expandindo os seus horizontes, fazendo com que a ciência se torne alcançável e, sobretudo, amada pelos alunos.

Palavras-chave: Cinema, Ensino, Biologia, Anime, Ensino Médio.

REFERÊNCIAS

BRASIL. Ministério da Educação. Parâmetros Curriculares Nacionais: Ensino Médio. Brasília: MEC/SEF, 2000.

BARROS, A. **Discurso sobre o anime como gênero educativo**. João Pessoa: UFPB, 2021.

HALL, J. Tratado de Fisiologia Médica. Rio de Janeiro: Elsevier, 2011.

LEVISON, W. Microbiologia Médica e Imunologia. Porto Alegre: AMGH, 2010.

LIMA, F. **O papel do timo no desenvolvimento do sistema imune.** Pediatria. São Paulo, 2012.

SILVA, V. Caracterização morfológica e funcional de adesão de neutrófilos em diferentes superfícies de titânio. Tese de Doutorado do Programa de Pós-Graduação em Patologia Molecular. Brasília: UnB. 2011

