

# CONFECÇÃO DE MODELOS MOLECULARES USANDO GARRAFAS PET COMO METODOLOGIA ALTERNATIVA PARA O ENSINO DE QUÍMICA

Mayara Ferreira Barbosa - Doutora pelo Curso de Pós-Graduação em Química da Universidade Federal da Paraíba- UFPB

Nayara de Lima Oliveira - Doutoranda pelo Curso de Pós-Graduação em Educação da Universidade Federal de São Carlos — UFSCar;

**Contatos:** , <u>mayarafbarbosa@gmail.com</u>; <u>nayaralima@estudante.ufscar.br</u>

## CONFECÇÃO DE MODELOS MOLECULARES USANDO GARRAFAS PET COMO METODOLOGIA ALTERNATIVA PARA O ENSINO DE QUÍMICA

- ➢ OBJETIVOS
- ➤ Propor para os estudantes a confecção de modelos moleculares a partir de garrafas PET com o intuito de auxiliar a aprendizagem, entendimento e visualização de algumas funções orgânicas, além de promover a consciência ambiental dos estudantes e tornar a aula de química orgânica mais lúdica.



#### > JUSTIFICATIVA

As metodologias alternativas que auxiliam o ensino de química estão cada vez mais presentes nos diálogos a respeito da melhoria do processo de ensino e aprendizagem. Dentre essas alternativas, encontra-se o uso de modelos moleculares, que são capazes de facilitar a visualização tornando a química menos abstrata.



> INTRODUÇÃO E REFERENCIAL TEÓRICO

- Metodologias Alternativas para o Ensino de Química
- Uso de Modelos Moleculares no Ensino de Química
- Modelos Moleculares Comerciais e Alternativos
- > Funções Orgânicas

| Função orgânica   | Grupo funcional  | Exemplo                          |  |  |  |  |  |  |  |
|-------------------|------------------|----------------------------------|--|--|--|--|--|--|--|
|                   |                  | H <sub>3</sub> C-CH <sub>3</sub> |  |  |  |  |  |  |  |
| Alcano            | Ligações simples | Etano                            |  |  |  |  |  |  |  |
|                   |                  | H <sub>3</sub> C OH              |  |  |  |  |  |  |  |
| Álcool            | .—ОН             | Etanol                           |  |  |  |  |  |  |  |
|                   |                  | O                                |  |  |  |  |  |  |  |
|                   | //               | 40 //                            |  |  |  |  |  |  |  |
| Aldeído           | R—∜              | H₃C—-{                           |  |  |  |  |  |  |  |
|                   | <u> </u>         | H                                |  |  |  |  |  |  |  |
|                   |                  | Etanal                           |  |  |  |  |  |  |  |
| Cetona            |                  | 0                                |  |  |  |  |  |  |  |
|                   | //               | H₃C—-{/                          |  |  |  |  |  |  |  |
|                   |                  | CH <sub>3</sub>                  |  |  |  |  |  |  |  |
|                   | \                | Propanona                        |  |  |  |  |  |  |  |
|                   |                  | Горанона                         |  |  |  |  |  |  |  |
| Ácido carboxílico | , <del>o</del>   | //                               |  |  |  |  |  |  |  |
|                   | //               | H <sub>3</sub> C—∕⟨              |  |  |  |  |  |  |  |
|                   |                  | ОН                               |  |  |  |  |  |  |  |
|                   | ОH               | Ácido etanóico                   |  |  |  |  |  |  |  |
| Éter              |                  | O CH <sub>3</sub>                |  |  |  |  |  |  |  |
|                   | -0-              | H <sub>3</sub> C                 |  |  |  |  |  |  |  |
|                   |                  | Metóxietano                      |  |  |  |  |  |  |  |
| Éster             | 0                | , <mark>0</mark>                 |  |  |  |  |  |  |  |
|                   | //               | H <sub>3</sub> C—                |  |  |  |  |  |  |  |
|                   |                  |                                  |  |  |  |  |  |  |  |
|                   | <u>`</u>         | O—CH <sub>3</sub>                |  |  |  |  |  |  |  |
|                   |                  | Etanoato de metila               |  |  |  |  |  |  |  |

#### > METODOLOGIA

- > Esta pesquisa é de abordagem quali-quantitativa;
- Sendo caracterizada como uma pesquisa participante, realizada com 4 turmas da 2º série do Ensino Médio.

Quadro 1 – Metodologia utilizada

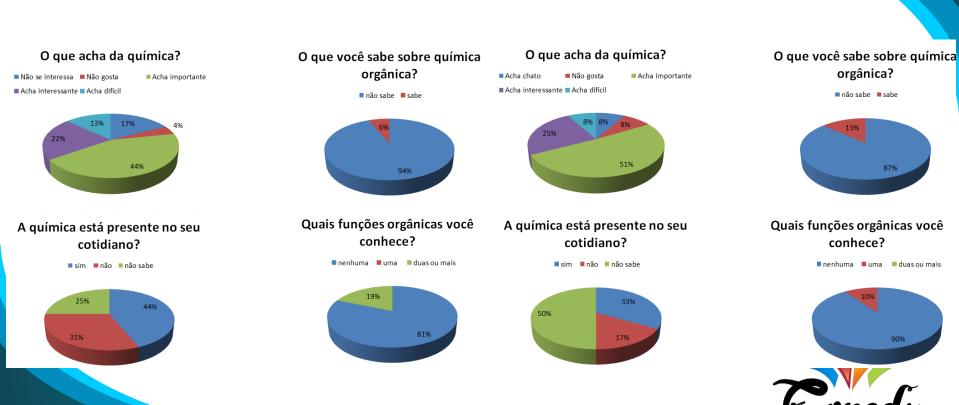
| Etapas                                                                            | Objetivos                                                                                                | Metodologias                                                                                                                    | Tempo                             | Avaliação                                             |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|
| 1 - Aula expositiva<br>sobre funções<br>orgânicas                                 | Entender as diferenças<br>estruturais e<br>importância dos<br>compostos orgânicos                        | Aula expositiva com uso de quadro e pincel                                                                                      | 2 aulas e ½ aula<br>(112 minutos) | Questionário<br>Investigativo inicial<br>(Apêndice A) |
| 2 - Aula a respeito<br>da consciência<br>ambiental e reuso<br>da garrafa PET      | Compreender que o<br>reuso de materiais é<br>uma iniciativa para<br>obtenção de<br>consciência ambiental | Aula dialogada                                                                                                                  | ½ aula (22<br>minutos)            | Debate em sala de aula                                |
| 3 - Oficina de<br>construção de<br>modelos<br>moleculares de<br>funções orgânicas | Ajudar os estudantes a<br>aprimorarem a<br>visualização espacial<br>das moléculas<br>orgânicas           | Dividir a turma em grupos;<br>Usar garrafa PET, fita<br>adesiva e eletroduto de PVC<br>para construir os modelos<br>moleculares | 1 aula (45 minutos)               | Questionário Final<br>(Apêndice B)                    |
| 4 - Apresentação de<br>seminário sobre as<br>funções orgânicas                    |                                                                                                          | Pesquisa sobre a molécula orgânica de cada grupo; Uso de apresentações em grupo para fixação do conhecimento                    | 1 aula (45 minutos)               | Avaliação da<br>metodologia aplicada<br>(Apêndice C)  |

Fonte: Autoria própria (2023)

### > RESULTADOS E DISCUSSÃO

Turma 1 Turma 2










#### > RESULTADOS E DISCUSSÃO

Turma 3 Turma 4



## > RESULTADOS E DISCUSSÃO

|        | Percentual de acerto das turmas (%) |                         |                         |                          |       |
|--------|-------------------------------------|-------------------------|-------------------------|--------------------------|-------|
| Turmas | Questão 1<br>(subjetiva)            | Questão 2<br>(objetiva) | Questão 3<br>(objetiva) | Questão 4<br>(subjetiva) | Média |
| 1      | 81,8                                | 100,0                   | 86,4                    | 100,0                    | 92,0  |
| 2      | 94,7                                | 100,0                   | 94,7                    | 100,0                    | 97,4  |
| 3      | 90,5                                | 19,0                    | 100,0                   | 95,2                     | 76,2  |
| 4      | 58,3                                | 83,3                    | 75,0                    | 100,0                    | 79,2  |



- > CONSIDERAÇÕES FINAIS
- > Turmas 1 e 2 índice médio acima de 92% de acertos
- Turmas 3 e 4 um índice médio de 78% de acertos.
- > .Foi observado que os modelos moleculares confeccionados pelos alunos usando garrafas PET precisavam de um grande espaço para seu armazenamento e de um grande número de garrafas.
- ➤ Aliar a metodologia tradicional com o uso de garrafas PET para confecção de modelos moleculares surtiu um efeito positivo



#### > REFERÊNCIAS

BRASIL, Ministério da Educação, Lei de Diretrizes e Bases da Educação Nacional nº 9.394/96, de 20 de Dezembro de 1996, Brasília: Ministério da Educação e Cultura, 1996. Disponível em: <a href="http://portal.mec.gov.br/seesp/arquivos/pdf/lei9394\_ldbn1.pdf">http://portal.mec.gov.br/seesp/arquivos/pdf/lei9394\_ldbn1.pdf</a>. Acesso em: 08/09/2023.

GIORDAN, M.; GÓIS, J. Revista Latinoamericana de Tecnologia Educativa, 2005, 3, 41.

HARDWICKE, A. J. Schl. Sci. Rev. 1995, 278, 59.

LIMA, J. O. G. Perspectivas de novas metodologias no Ensino de Química. *Revista Espaço Acadêmico*. **2012**, *12*, 96.

LIMA, M. B; NETO, P. Química Nova na Escola, 1999, 6, 903.6.

LIMA, M. B; NETO, P. Química Nova na Escola, 1999, 6, 903.6.

SOLOMONS, T. W. G.; FRYHLE, C. B. **Química Orgânica**, 10<sup>a</sup> edição. Rio de Janeiro: LTC, 2012.

