

DESENVOLVIMENTO DE BANCADA DIDÁTICA DE BOMBA CENTRÍFUGA COM MATERIAIS RECICLÁVEIS

Lucas Souza Lima ¹

Pedro Felipe Santos Andrade ²

Vitor Otávio Silva Teixeira de Souza ³

Beliato Santana Campos ⁴

INTRODUÇÃO

A obtenção e armazenamento de recursos essenciais para a sobrevivência do homem sempre foram um grande desafio. Graças a esta necessidade, vários equipamentos com capacidade de realizar diferentes funções foram desenvolvidos ao longo da história humana e, dentre essas inúmeras invenções, uma das mais úteis para a evolução da sociedade foi a bomba centrífuga.

Legner (2017) afirma que as bombas centrífugas são máquinas operatrizes acionadas por motores elétricos ou à combustão com a finalidade de transportar fluidos líquidos (newtonianos) de um ponto ao outro. Segundo Fernandes (2013), uma das bombas mais utilizadas no processo de bombeamento é a centrífuga e isso ocorre principalmente em função de seu custo de aquisição, considerado relativamente baixo em relação aos demais modelos, e da grande simplicidade que este equipamento oferece em sua operação.

Apesar de sua enorme gama de aplicações nas mais diversas áreas, poucas pessoas realmente conhecem a enorme importância desses objetos para a sociedade e ainda menor é o número daqueles que procuram compreender o seu funcionamento. Com o intuito de utilização como recurso didático em aulas práticas em cursos que envolvam as áreas de hidráulica e mecânica, com custo inferior aos modelos comercializados, de fácil manuseio, manutenção simples, utilizando-se materiais recicláveis e transparentes para que seu funcionamento interno

¹ Discente do Curso Técnico em Eletromecânica do Instituto Federal de Educação, Ciência e Tecnologia da Bahia

⁻ IFBA, <u>lllucaslucas28@gmail.com</u>;

² Discente do Curso Técnico em Eletromecânica do Instituto Federal de Educação, Ciência e Tecnologia da Bahia

⁻ IFBA, pedrofsandrade@hotmail.com;

³ Professor orientador: Especialista em Automação Industrial, Universidade Cândido Mendes - UCAM, vostsouza@gmail.com.

⁴ Doutor pelo Curso de Física da Universidade Federal da Bahia - UFBA, <u>beliatocampos@ifba.edu.br;</u>

pudesse ser observado, o objetivo do presente trabalho foi desenvolver um protótipo de bancada didática de uma bomba centrífuga com materiais recicláveis.

METODOLOGIA

A metodologia deste projeto consistiu basicamente em observar o funcionamento de uma bomba centrífuga comum e replicar seu funcionamento de forma fiel em um modelo feito a partir de materiais recicláveis, conseguindo assim um equipamento sustentável e barato. Ainda no início do projeto, com a intenção de facilitar a obtenção dos materiais necessários e também simplificar o máximo possível o seu processo de montagem, foi realizada uma revisão da literatura.

Após todo este processo de pesquisa, foi idealizado e desenvolvido um modelo de bomba simples com estrutura composta por somente quatro partes principais, sendo elas motor, eixo, hélice e carcaça. Grande maioria dos materiais utilizados neste projeto é reciclável, sendo eles, um pequeno motor de radiador automobilístico, dois pedaços de canos PVC sendo um 20 mm e outro de 100 mm de diâmetro, duas garrafas pet e uma haste de guarda chuva. Massa epóxi e a fita adesiva são os únicos materiais cuja origem não é reciclável.

Seguindo o projeto, para começar a montagem da bomba, foi fabricado primeiro o eixo com a hélice. Foi necessário cortar a haste do guarda chuva no tamanho necessário de 30 cm, e logo após, cortar um tubo de PVC de 4 cm em 4 pedaços de mesmo tamanho e colá-los na ponta da haste. Em seguida, montou-se a carcaça da bomba centrifuga, utilizando-se as partes superiores de duas garrafas pet coladas uma na outra, deixando apenas as duas bocas das garrafas como únicas saídas e utilizando uma boca como passagem para o eixo e a outra para a entrada de água. Os últimos passos foram fazer uma terceira saída na carcaça por onde é escoada a água, prender a outra ponta do eixo no motor e fixar toda a bomba e o motor em uma base para diminuir as chances de ocorrência de futuros defeitos que poderiam ser causados pela vibração excessiva do equipamento.

REFERENCIAL TEÓRICO

Diversos equipamentos costumam ser utilizados como forma de ensino em cursos técnicos e até mesmo em indústrias para o treinamento de novos funcionários. Dentre estes equipamentos, um dos mais comuns é a bancada didática, que se refere a uma estação de trabalho. Para alguns, este tipo de equipamento não parece ser particularmente relevante, porém

estas bancadas podem vir a ser incrivelmente uteis. Fabian (2017) diz que o uso de um meio multissensorial de aprendizagem como uma bancada didática é um complemento à teoria ensinda em sala de aula e oferece ao aluno a oportunidade de buscar sua autonomia na construção de seu próprio conhecimento.

De acordo com o trabalho de Barros e colaboradores (2021), uma bancada didática possui como seu principal objetivo auxiliar a fixar na mente do estudante de forma prática todo o conhecimento teórico obtido em sala de aula, ou seja, sem o auxílio deste tipo de equipamento, a formação de novos profissionais capacitados tornaria-se uma tarefa muito mais desafiadora já que, principalmente através destas bancadas, são realizados muitos dos principais testes práticos para avaliar o aprendizado dos estudantes.

A pesquisa de Silva e outros (2013) descreve com riqueza de detalhes alguns dos principais procedimentos que devem ser seguidos para a construção de uma bancada de testes para bombas centrífugas, como a criação de um rotor funcional através da disponibilização de um roteiro com fórmulas de dimensionamento de rotores e também a montagem de forma correta de todas as partes da bancada.

RESULTADOS E DISCUSSÃO

A bancada didática mostrou-se funcional e sua estrutura possui uma boa resistência, podendo ser transportada para outros locais sem correr o risco de ser danificada. A bomba ainda não possui um equipamento de controle de vazão, apesar de ter sido observado que ela é capaz de manter uma vazão quase estável ao longo do tempo, quando alimentado por uma fonte de bancada. O custo final de aquisição ficou abaixo do esperado, totalizando aproximadamente 20,00 reais devido ao uso de materiais recicláveis.

Inicialmente, houve preocupações por parte da resistência da hélice, que é o componente que mais está sujeito a sofrer danos durante o funcionamento. Porém, ela se mostrou apta para o trabalho, não demonstrando nenhum tipo de defeito durante todos os testes realizados em laboratório. A carcaça, mesmo feita de materiais muito simples, também se mostrou muito viável pois, mesmo após passar longos períodos de tempo sofrendo com os efeitos da rápida entrada e saída de água pelo seu interior e pelas vibrações transmitidas pelo motor através do eixo, não demonstrou nenhum tipo de rachadura ou vazamento.

A bomba apresentou um pequeno vazamento de água na entrada do eixo na carcaça por falha no projeto, contudo, vale ressaltar que não apresenta risco para o bom funcionamento do

equipamento e que este problema deve ser solucionado com alguma técnica de vedação de eixos como o uso de uma gaxeta em versões futuras.

CONSIDERAÇÕES FINAIS

Após concluir todas as etapas do desenvolvimento deste protótipo, foi possível observar a grande importância que os materiais recicláveis possuem em nosso dia a dia, já que, devido à grande facilidade de acesso a eles, o preço do projeto foi muito acessível.

Devido a sua grande simplicidade nos processos de montagem e desmontagem, a bomba didática apresentou grande potencial para auxiliar alunos e professores das mais diversas áreas de ensino e aprendizagem. Não só na realização de aulas práticas, mas também em vários projetos de pesquisa dos mais variados tipos. Perante todos estes dados, pode-se concluir que o projeto mostrou-se dentro das expectativas previstas. Seu custo final é baixo, a montagem e a manutenção são simples e sua utilidade em sala de aula é inegável.

Futuramente, além de corrigir os defeitos existentes, podem ser adicionados novos recursos ao protótipo, pois a bomba pode ser facilmente integrada a um sistema de automação via Arduino que seria capaz de acrescentar mais opções de Automação e Controle ao equipamento, como sistemas de controle de velocidade de rotação, medição de vazão e até mesmo medidores de consumo de energia.

Palavras-chave: Educação Profissional e Tecnológica, Hidráulica, Mecânica, Reaproveitamento.

REFERÊNCIAS

BARROS, G. F. V.; et Al. Uso de bancada didática no ensino teórico da disciplina de sistemas hidráulicos: um estudo de caso. XXVII CONGRESSO NACIONAL DE ESTUDANTES DE ENGENHARIA MECÂNICA, 2021, Curitiba-PR.

FABIAN, G. **DESENVOLVIMENTO DIDÁTICA VOLTADA AO ESTUDO DE SISTEMAS PNEUMÁTICOS**. 2017. 77 p. Trabalho de conclusão de curso (Engenharia Mecânica) - UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA, [S.l.],2017.Disponível em: http://www.repositorio.ufc.br/handle/riufc/54974 acesso em 15 de jun de 2022

FERNANDES, E. N. **FABRICAÇÃO E ESTUDO DE BOMBA ALTERNATIVA DE DUPLA IMPULSÃO**. In: FERNANDES, Erismar Nivaldo. 2019. Trabalho de conclusão de curso (Bacharelado em Engenharia mecânica) - UNIVERSIDADE FEDERAL DE

ENGENHARIA MECÂNICA DO RIO GRANDE DO NORTE, [S. 1.], 2019. Disponível em:<https://repositorio.ufrn.br/handle/123456789/42894> acesso em 20 de jun de 2022

LEGNER, C. **Bombas Centrífugas para o Tratamento de Água e Efluentes**. Revista TAE, ano 2017, ed. 34, 2017. Disponível em: https://www.revistatae.com.br/Artigo/28/bombas-centrifugas-para-o-tratamento-de-agua-e-efluentes > acesso em 15 de jun de 2022.

SILVA, et Al.Congresso Brasileiro De Educação Em Engenharia, 2013, Gramado. Projeto e Construção De Uma Bancada Didática Para Ensaio De Bombas Centrífugas [...]. [S. 1.: s. n.], 2013. acesso em 03 de Jul de 2022