

ENERGIA EÓLICA: UMA ABORDAGEM NO ENSINO DE FÍSICA

Márcia Cristina Palheta Albuquerque¹, Iago Luan Santos Sousa¹, Leiliane do Socorro Costa Araújo¹, Glória Maria Conde de Lima¹, Marcos Lázaro de Souza Albuquerque²

¹ Instituto Federal de Educação, Ciência e Tecnologia do Pará, Campus Bragança, PA, mcppalheta@hotmail.com

² Universidade Federal do Pará, Campus Bragança, mlazaro@ufpa.br

Introdução

As energias renováveis são na atualidade o grande passo para o desenvolvimento de um mundo sustentável. Nas últimas décadas, as atividades humanas de produção e de consumo, vêm ocasionando mudanças no meio ambiente nunca antes verificadas (SILVA, R. R. & LIMA, J. M. 2011). Muitas dessas mudanças estão diretamente ligadas à geração de energia que seja capaz de suprir às necessidades de consumo da população mundial.

Discussões têm sido centralizadas em torno do tema energia, principalmente sobre o fim dos combustíveis fósseis e como estes serão substituídos gradativamente por fontes alternativas de energia. Neste cenário, as energias renováveis como: a solar e eólica, surgem como uma alternativa de **energia limpa**, e de fonte inesgotável de recursos que podem ser uma forma importante de preservação do meio ambiente. Mas especificamente o interesse de pesquisa para este trabalho é a energia eólica. O vento é uma grandeza em abundância na natureza. Provém de forma indireta da radiação solar, a qual é responsável pelo deslocamento de massas de ar quentes do equador em direção a regiões mais frias nos polos, o que ocasiona um movimento regular de circulação geral da atmosfera, ou seja, os ventos surgem a partir das dinâmicas da Terra. Apesar do uso do vento para geração de energia seja recente, a energia eólica já era utilizada pelos povos antigos a pelo menos 3.000 A.C (FARIAS, L. M., SELLITO, M. A., 2011).

De acordo com a International Agency Energy (IEA) em 2015 a energia eólica é a grande responsável pelo crescimento na geração de energia por fontes renováveis no mundo, sendo que ela responde por 34%, seguida por hidroelétricas com 30% e por usinas heliotérmicas 18% (IEA, 2015). Em 2016, pouco menos de 487GW da nova capacidade de energia eólica foi instalada em todo mundo, segundo o Global Wind Energy Council (2017), e a potência está da ordem de 55GW anualmente. Segundo o relatório síntese do Balanço Energético Nacional (BEN, 2017), com a base de dados referentes à 2016, a matriz energética renovável brasileira ficou mais limpa com alta de 75,5% para 81,7 %. A geração de energia

eólica, atingiu 33,5 TWh, crescimento de 54,9% e a potência eólica atingiu 10.124 MW, expansão de 32,6%.

Diante de assuntos como a preservação ambiental e o uso consciente de energia, tornase um desafio para os professores levarem para sala de aula discussões contextualizadas a partir de questões tão importantes para o cotidiano. Ministrar uma aula sobre energia nos coloca à frente de um conteúdo complexo, devido a relação do tema com o uso das tecnologias, da questão econômica e da sociedade. Para Assis e Teixeira (2003), o conceito de energia está inserido no contexto de conservação de energia e que a abordagem no ensino de Física está relacionada às discussões de transformação de energia, seus diferentes processos e suas diversas formas. É de fundamental importância apresentar aos discentes do ensino médio o tema energia de forma que os mesmos se tornem conscientes do uso racional dos recursos energéticos, além de lhes mostrar as vantagens das novas formas de energia, como a Eólica, que por ser renovável preserva o meio ambiente. Na contramão disso o ensino de Física é muito deficiente, Santos et al. (2017), destaca que, inúmeras são as dificuldades que vão desde modelos de ensino empregados por muitos professores, currículos escolares muito extensos e carga horária muito pequena.

Porém, a partir das diretrizes apresentadas nos Parâmetros Curriculares Nacionais do Ensino Médio de Física (BRASIL, 2002), quando se toma como referência o "para que ensinar Física", supõe-se que se esteja preparando o jovem para ser capaz de lidar com situações reais, como as crises de energia, problemas ambientais e etc. Portanto, apoiando-se de que a Física se consolida por estudar os fenômenos da natureza, é necessário identificar os seus conteúdos curriculares dentro do contexto social abordando-os de forma qualitativa para que a construção do conhecimento seja significativa.

De acordo com Picolo, A. et al. (2014), os princípios básicos para a geração de energia elétrica a partir do vento se relacionam intimamente com grandes temas estudados pela Física que pode servir como auxiliar para o estudo desses conteúdos. Logo, considerando que a interdisciplinaridade é parte importante na ampliação do conhecimento, relacionar os conceitos físicos presentes na energia eólica pode ser uma ferramenta fundamental e alternativa para a compreensão dos tópicos de Física referentes a geração de energia. Além disso, proporciona a alunos e professores uma ampla discussão sobre a contribuição dessas fontes **limpas** de energia para a vida sustentável do planeta. O objetivo deste trabalho é apresentar uma abordagem qualitativa sobre os conceitos físicos presentes na energia eólica no ensino de Física.

Metodologia

Este trabalho foi realizado no dia 07 de dezembro de 2016, na Escola Estadual de Ensino Fundamental e Médio Monsenhor Mâncio Ribeiro, localizada no município de Bragança, PA. Durante o evento "Caravana da Física" do Programa Institucional de Bolsa de Iniciação à Docência (PIBID), da Faculdade de Física do Instituto Federal de Educação e Ciência e Tecnologia do Pará (IFPA), campus Bragança, PA. O evento Caravana da Física tem como principal objetivo apresentar palestras, minicursos, oficinas e experimentos de Física para as escolas públicas do município, além de integralizar os alunos bolsistas do programa com a realidade dessas escolas.

Para elaboração do minicurso, um levantamento bibliográfico referente aos conteúdos de Física contidos na produção de energia eólica foi feito a fim de identificá-los. Além disso, uma maquete eólica foi usada para auxiliar na descrição dos conteúdos que foram ministrados no minicurso denominado "O uso das Energias Renováveis no Ensino de Física". O minicurso foi apresentado nos turnos tarde e noite, com duração de 2 horas. Participaram do evento discentes do 1º, 2º, e 3º ano do ensino médio, aproximadamente 60 discentes no total, divididos em turnas nos turnos tarde e noite, cada uma com 15 alunos.

Figura 01- (a) e (b) Apresentação do minicurso sobre energia eólica

(b)

Fonte: Os autores.

Todas as partes referentes à produção de energia eólica foram apresentadas, desde a formação dos ventos até a geração de energia a partir das turbinas eólicas. Também foram trabalhados os conceitos de energia cinética, fazendo uma relação com o movimento do ar para formação dos ventos, energia mecânica, utilizada para girar as pás de uma turbina eólica, além dos conceitos de motor elétrico e transformação de energia. A pesquisa para este trabalho foi qualitativa que segundo Goldenberg (1999), esta pesquisa não se preocupa com representatividade numérica, mas, sim, com o aprofundamento da

compressão de um grupo social, organização e etc. Para avaliação do minicuros foi elaborado um questionário com as seguintes perguntas:

- 1) O que você entende sobre energia? Cite uma forma de energia.
- 2) O que você entende sobre energias renováveis? E energia eólica o que você entende?
- 3) Escreva o que você conseguiu compreender os conteúdos de Física abordados no minincurso através da energia eólica?
- 4) Fale o que você acha importante que nas suas aulas de Física os professores podem utilizar assuntos como o da energia eólica para discutir conceitos físicos?

Resultados e Discussões

Após analisarmos todos os questionários com a pergunta referente ao entendimento dos alunos sobre energia chegamos aos seguintes resultados:

De acordo com as respostas obtidas em relação à primeira pergunta verificamos que cem por cento dos alunos entrevistados entendem o que é energia a partir de seu cotidiano sem relacionar com os conceitos físicos fazendo uma associação à energia de suas casas, por isso citaram na sua totalidade, a energia elétrica como forma de energia. De acordo com o aluno A e B respectivamente:

"Energia é o que liga as lâmpadas da minha casa e também a televisão e a geladeira. Energia elétrica".

"Energia vem dos fios elétricos da rua e liga todos os aparelhos em casa. Energia elétrica".

Observou-se que os discentes apresentaram uma concepção a respeito de energia e que este está relacionado com o mundo em que ele vive. Sabe que precisamos de energia para que os aparelhos elétricos funcionem. E que a energia elétrica é a forma de energia mais importante que eles conhecem.

De acordo com a pergunta dois percebeu-se que grande parte dos alunos entendem as energias renováveis como uma energia limpa e não prejudicial ao meio ambiente, mas não tem concepção do seja energia eólica, observou-se que os alunos pesquisados não souberam relacionar à palavra eólica a ventos. Entretanto, uma pequena parte não soube responder com clareza. Como nas respostas dos alunos C e D:

"Energia renovável é uma energia limpa que não faz mal ao meio ambiente e que está sempre na natureza. Não conheço esta energia. O que é eólica?"

"Energia renovável não sei o que significa, mas acho que é uma energia nova. Eólica? Não sei.

Já para a pergunta três que trata da compreensão dos conteúdos, observou-se através das respostas que grande parte dos alunos tiveram boa compreensão dos conteúdos de Física trabalhados a partir da energia eólica, como vê-se na resposta do aluno E:

"Entendi melhor o conceito de energia cinética apresentado desta forma, até a parte de como a energia é produzida e como é distribuída ficou muito mais fácil de ver".

Através do comentário do aluno F, observa-se a aceitação e a importância de relacionar a energia eólica para compreensão dos conteúdos de Física:

"Acho importante o uso de novas maneiras de aprender Física. E também vimos que existem outras formas de energia e como devemos usar de forma consciente a energia em casa".

Com os resultados obtidos percebeu-se que todos os alunos entrevistados, cerca de cem por cento, são favoráveis à utilização de novas maneiras de se ensinar e aprender física devido à dificuldade de perceber os conceitos clássicos existentes na disciplina.

Conclusão

Com os resultados desta pesquisa feita com os alunos de 1°, 2° e 3° ano do ensino médio da Escola Estadual de Ensino Fundamental e Médio Monsenhor Mâncio Ribeiro, Bragança- PA, durante a Caravana da Física, subprojeto do PIBID Física do Instituto Federal de Educação, Ciência e Tecnologia do Pará/integrado do Instituto Federal do Pará (IFPA) Campus Bragança, pode-se verificar que através da energia eólica é possível abordar vários conceitos de Física, apresentando de forma diferenciada e contextualizada esses conteúdos, os quais estão inseridos num tema extremamente discutido na atualidade, como a crise energética e o meio ambiente, o que tornou a discussão sobre o tema importante na visão dos alunos que participaram da pesquisa. Além de proporcionar aos bolsistas do PIBID, uma outra forma de desenvolver metodologias diferenciadas capazes de auxiliar o ensino da disciplina de Física.

Referências

ASSIS, A., TEXEIRA, O.P.B. **Algumas Considerações sobre o ensino e a aprendizagem do conceito de energia**. Ciência & Educação. Vol.9, nº .1, p. 41-52, 2003. Disponível em: http://www.scielo.br/pdf/ciedu/v9n1/04.pdf. Acessado em 06/09/2017.

BRASIL. Parâmetros Curriculares Nacionais (PCN+), Ensino Médio, Ciências da Natureza, Matemática e suas Tecnologias. MEC. Brasil, 2002. Disponível em: http://portal.mec.gov.br/seb/arquivos/pdf/CienciasNatureza.pdf. Acessado em: 08/09/2017.

Dos SANTOS, F. R. A., GOMES, L. M., JUNIOR, J. G. S. L. **Uma abordagem metodológica do ensino sobre energia eólica no ensino médio**. Scientia Plena. Vol. 13, nº 01. Disponível em:

http://www.scientiaplena.org.br/doi:10.14808/sci.plena.2017.012718. Acessado em: 06/09/2017.

Empresa de Pesquisas Energéticas (EPE), **Balanço Energético Nacional 2017 – Ano Base 2016**: Relatório Síntese (EPE, Rio de Janeiro, 2017). Disponível em: https://ben.epe.gov.br/. Acessado em: 07/09/2017.

FARIAS, L. M., SELLITTO, M. A., **O uso da energia ao longo da história: evolução e perspectivas futuras**. Revista Liberato. Vol. 12, nº 17, p. 01- 106. Novo Hamburgo- RS. 2011. Disponível em: http://www.liberato.com.br/sites/default/files/arquivos/Revista_SIER/v.%2012,%20n.%2017%20(2011)/1.%20Uso%20da%20energia%20ao%20longo%20da%20hist%F3ria.pdf. Acessado em: 05/09/2017.

Global Wind Energy Council- GWEC, **Global Wind Report- Annual Market Update** (**Global Wind Energy Council, Brussels, 2017**). Disponível em: http://www.gwec.net/wpcontent/uploads/2017/03/GWEC_Global_Wind_2016_Report_LR.pdf. Acessado em: 06/09/2017.

INTERNATIONAL ENERGY AGENCY- IEA. **World Energy**. Outlook. Paris: [s.n.], 2015. Disponível em: https://www.iea.org/. Acessado em: 06/09/2017.

PICOLO, A. P., BUHLER, A. J., RAMPINELE, G. A. **Uma abordagem sobre energia eólica como alternativa de ensino de tópicos de Física Clássica**. Revista Brasileira de Ensino de Física. Vol. 36, nº 4. 4306, 2014. Disponível em: http://www.sbfisica.org.br/rbef/pdf/364306.pdf. Acessado em 08/09/2017.

SILVA, R. R., LIMA, J. M., Análise do tema energia nos livros didáticos de Física: um norteador para elaboração de projetos de sustentabilidade na EJA. VII Encontro Nacional de Pesquisa em Educação e Ciências- VII ENPEC. Rio de Janeiro- RJ, 2011. Disponível em: http://www.nutes.ufrj.br/abrapec/viiienpec/lista_area_9.htm. Acessado em: 05/09/2017.