

A INFLUÊNCIA DE FATORES AMBIENTAIS NA PRESENÇA DE METABÓLITOS SECUNDÁRIOS NA ESPÉCIE VARRONIA GLOBOSA JACQ. E O USO PROBLEMÁTICO DE PLANTAS PARA FINS MEDICINAIS

Natanael Teles Ramos de Lima¹; Karla Joane da Silva Menezes²; Renam Fellipe Silveira Muniz ²: Malu Maria Lucas dos Reis³: Ivana Maria Fechine⁴

Discente de Mestrado na Universidade Federal da Paraíba¹ (teles.natanael@gmail.com); Discentes de Graduação da Universidade Estadual da Paraíba² (menezeskarla5@gmail.com); renamsilveira@gmail.com); Discente de Doutorado da Universidade Federal da Paraíba³ Professora Doutora Associada-Departamento de Farmácia-Universidade Estadual da Paraíba⁴ (ivana.fechine@gmail.com)

Resumo: Varronia globosa, pertencente à família Boraginaceae sensu lato, conhecida popularmente como maria-preta, é usada como analgésico para cólicas menstruais, inflamação da garganta, resfriados, gripes, sangramentos, reumatismo e indigestão. Fatores mesológicos como sazonalidade, ritmo circadiano, disponibilidade hídrica e nutricional, temperatura, radiação ultravioleta, altitude, estímulos mecânicos ou ataque de patógenos promovem a produção ou alteram a quantidade dos metabólitos presentes nas plantas. Diante disso, objetivou-se realizar uma comparação entre screenings fitoquímicos qualitativos dos principais metabólitos secundários de exemplares de V. globosa coletados em épocas e locais diferentes, e então verificar se fatores externos influenciaram na ocorrência de determinados metabólitos, e com isso discutir o uso ineficiente de plantas medicinais nesses casos. A metodologia adotada foi a de obtenção do extrato etanólico bruto (EEB) por maceração alcoólica e a avaliação fitoquímica comparou a presença de metabólitos secundários em EEBs do caule de V. globosa oriundas de locais e épocas distintos, Santa Luzia (2013) e Puxinanã (2016), na Paraíba. O estudo comparativo dos EEBs, mostrou que a planta do município de Puxinanã, apresentou resultado negativo para presença de flavonoides quando comparada com a procedente de Santa Luzia, em 2013. Portanto, como fatores ambientais influenciam na produção de metabólitos secundários, consequentemente o uso etnofarmacológico é comprometido. Sendo estes metabólitos responsáveis pelos efeitos benéficos, os usuários da região não poderiam se favorecer dos efeitos dos flavonoides, acarretando em um uso ineficaz. Estudos farmacológicos e fitoquímicos mais aprofundados da espécie são interessantes na investigação de até onde condições ambientais podem influir no tratamento com plantas medicinais.

Palavras-chave: Maria-Preta; Boraginaceae; Fatores mesológicos; Plantas medicinais.

1. INTRODUÇÃO

A extensa diversidade biológica e cultural do Brasil faz com que o uso de plantas para fins medicinais reflita grandemente sobre o uso popular; a produção de chás, tinturas, garrafadas, unguentos, banhos e lambedores, bem como o uso da planta *in natura* são práticas comuns na medicina tradicional e popular. Embora o uso de medicamentos alopáticos como terapia seja predominante atualmente, os brasileiros estão cada vez mais à procura de tratamentos à base de plantas medicinais e fitoterápicos, o que pode ser visualizado com o aumento de 161% na busca por esses produtos no Sistema Único de Saúde (SUS) entre 2013 e 2015 (MONTELES; PINHEIRO, 2007; MACIEL, 2016).

(83) 3322.3222

Varronia globosa Jacq., maria-preta, é usada popularmente para diversos fins, na forma de infuso ou decocto das folhas, contra indigestões, cólicas menstruais e reumatismo (SILVA et al., 2004). Gripes, sangramentos e inflamação da garganta (ALBUQUERQUE et al., 2007). Em Cuba, a planta é conhecida como "yerba de la sangre" por seus efeitos benéficos sobre afecções renais e também como anti-hipertensivo, além de que a decocção da parte aérea da planta é administrada internamente como purificador do sangue e como hemostático se aplicado externamente. Utilizada ainda em desordens ósseas e musculares (GODÍNEZ-CARABALLO; VOLPATO, 2008; MARTÍN, 2011; MATIAS et al., 2015).

O metabolismo secundário, ou metabolismo especial, é assim chamado por ter seus metabólitos derivados do metabolismo primário. No metabolismo secundário são vistas a produção de substâncias e a ocorrência de processos que dão-se através da inter-relação do indivíduo com seu meio ambiente: sazonalidade, ritmo circadiano, disponibilidade hídrica e de nutrientes, temperatura, radiação ultravioleta, altitude, reações por estímulos mecânicos ou ataque de patógenos. Esses fatores ambientais promovem a produção ou alteram a quantidade dos metabólitos presentes nas plantas, e com isso são necessários compostos (do metabolismo secundário) que garantam a sobrevivência e existência da espécie em seu ambiente (GOBBO-NETO; LOPES, 2007; KREIS et al., 2017).

Nesse cenário, realizou-se um *screening* fitoquímico qualitativo dos principais metabólitos secundários de *Varronia globosa* Jacq. e feita uma comparação entre exemplares coletados em épocas e locais diferentes, com intuito de verificar se fatores externos influenciaram na ausência/ presença de determinados metabólitos e com isso discutir o uso ineficiente de plantas medicinais nesses casos.

2. METODOLOGIA

2.1 Coleta e identificação do material vegetal

A coleta de *V. globosa* foi realizada no município de Puxinanã, Paraíba em 01/02/2016. O voucher encontra-se depositado no Herbário Lauro Pires Xavier, Departamento de Sistemática e Evolução, Centro de Ciências Exatas e Naturais da UFPB, sob a inscrição *Varronia globosa* Jacq. Brasil: Paraíba: Santa Luzia, M. F. Agra 6561-01/03/2006 (JPB 36075).

2.2 Processamento do material vegetal

O material vegetal foi levado até o Laboratório de Fitoquímica (LAFIT) da Universidade Estadual da Paraíba, onde foram separadas as folhas, o caule e as raízes. Em seguida, as partes foram passaram por secagem em estufa de circulação de ar, com temperatura de 50° C, por aproximadamente três dias. As partes secas foram pulverizadas em moinho de facas, obtendo-se 108,538g de droga vegetal do caule, 47,762g de droga vegetal das folhas e 7,060g das raízes.

2.3 Preparação do extrato etanólico bruto (EEB) do caule de V. globosa

O pó do caule foi submetido à maceração com etanol (EtOH), sendo o solvente substituído diariamente, até a perda da coloração do agente extrator. Posteriormente, os extratos tiveram o solvente evaporado em um rotaevaporador a temperatura de 50°C.

2.4 Avaliação fitoquímica

2.4.1 Screening fitoquímico qualitativo do EEB do caule de V. globosa

O *screening* fitoquímico realizado avaliou a presença de fenois e taninos, polissacarídeos, flavonoides, alcaloides, esteroides/triterpenoides, realizados de acordo com a metodologia descrita por Barbosa (2001) e Peixoto Sobrinho et al. (2012) resumidos na Tabela 1.

Tabela 1. Resumo dos testes fitoquímicos realizados com Varronia globosa Jacq.

Metabólito secundário	Teste de Identificação	Resultado Positivo	
Polissacarídeos	Lugol	Coloração azul	
Compostos fenólicos	E ₂ Cl 10/	Azul – vermelho	
Taninos	FeCl ₃ 1%	Azul e/ou verde	
Flavonoides	Reação de Shinoda	Rósea – laranja	
Esteroides e triterpenoides	Reação de Liebermann-Burchard	Azul a verde	
Alcaloides	Buchardat/Mayer/Drangendorff	Precipitação e/ou	
		turvação	

2.4.1.1 Testes que utilizam água como solvente

Foi preparada uma solução-mãe com o EEB do caule de V. globosa pesando-se 140 mg do mesmo, que foi dissolvido em 28 mL de água destilada. Em seguida, esta solução foi levada ao banho de ultrassom para dissolver todo o soluto. Filtrou-se a solução papel filtro, sendo o filtrado a solução-mãe final.

Para determinação de polissacarídeos, transferiram-se 5 mL da solução-mãe para tubo de ensaio, adicionado de 2 gotas de lugol. O aparecimento de coloração azul indica o resultado positivo.

Para determinação de fenóis e taninos, foram transferidos 5 mL da solução-mãe para tubo de ensaio. Em seguida, foram adicionadas 2 gotas de solução alcoólica de FeCl3 a 1%. Qualquer mudança na coloração ou formação de precipitado indica reação positiva, quando comparado com o teste em branco (solvente + reativo). Uma coloração inicial entre o azul e vermelho é indicativa da presença de fenóis. Um precipitado escuro de tonalidade azul indica presença de taninos pirogálicos, e verde, a de taninos catéquicos.

2.4.1.2 Testes que utilizam metanol (MeOH) como solvente

A solução-mãe do caule de V. globosa foi preparada com 120 mg do EEB e dissolvido em 24 mL de MeOH. Posteriormente, esta solução foi levada ao banho de ultrassom para dissolver todo soluto. A solução foi filtrada em papel filtro, obtendo-se a solução-mãe (filtrado).

Para determinação de flavonoides, transferiram-se 10 mL da solução-mãe para um tubo de ensaio que foi então, acrescido de 5 gotas de HCl concentrado e raspas de magnésio. O surgimento de uma coloração rósea-alaranjada indica reação positiva.

2.4.1.3 Testes que utilizam clorofórmio (CHCl3) como solvente

Foi preparada uma solução-mãe com os EEB do caule de V. globosa pesando-se 75 mg do EEB, que foi dissolvido em 15 mL de CHCl3. Em seguida esta solução foi levada ao banho de ultrassom a fim de dissolver todo o soluto. A solução foi filtrada em papel filtro, obtendo-se a solução-mãe (filtrado).

Para a determinação de esteroides e triterpenoides, 10 ml da solução-mãe foi filtrada e adicionado 1 mL de anidrido acético, sob agitação suave. Em seguida, foram adicionadas 3 gotas de ácido sulfúrico (H2SO4) concentrado. O rápido desenvolvimento de cores que vão do azul evanescente ao verde persistente indicam resultado positivo.

2.4.1.4 Teste para alcaloides

O EEB do caule de V. globosa foi solubilizado em 5 mL de solução de HCl 5% e logo após filtrados. Em seguida, foram divididos três tubos de ensaio contendo 1 mL cada, e neles, foram adicionados gotas dos reagentes de Bouchardat, Dragendorff e Mayer, cada tubo deve conter apenas um reagente. Precipitação e/ou turvação em pelo menos um tubo é indicativo de presença de alcaloides.

2.4.2 Análise comparativa de triagens fitoquímicas

A comparação foi feita a partir de uma coleta realizada por Reis (2014), na zona rural do munícipio de Santa Luzia, Paraíba, em 31/05/2013. Tais resultados foram comparados com uma nova coleta conduzida em 01/02/2016 em Puxinanã. Paraíba.

3. RESULTADOS E DISCUSSÃO

3.1 Obtenção do EEB do caule de V. globosa

Dos 108,538g de droga vegetal do caule, obteve-se 8,643g de EEB, com rendimento de 7.96%.

3.2 Análise comparativa de *screenings* fitoquímicos

Fatores ambientais como altitude, temperatura, incidência solar, disponibilidade hídrica e quantidade de nutrientes no solo podem alterar grandemente a presença ou concentração de metabólitos secundários nos vegetais (GOBBO-NETO; LOPES, 2007).

A Tabela 2 mostra um comparativo em relação a resultados alcançados por Reis (2014) a partir de uma coleta realizada na zona rural no munícipio de Santa Luzia - Paraíba em 31/05/2013. Em (83) 3322.3222

comparação a coleta realizada em maio/2013, constatou-se a ausência de flavonoides no EEB do caule na coleta de 01/02/2016 em Puxinanã – Paraíba.

Tabela 2. Comparação dos resultados de triagens fitoquímicas do EEB do caule de *V. globosa* de diferentes coletas.

Metabólito	Teste de Identificação	Material obtido em 2013	Material obtido em 2016
secundário		(Santa Luzia)	(Puxinanã)
Polissacarídeos	Lugol	(-)	(-)
Fenois Taninos	FeCl ₃ 1%	(-)	(-)
Flavonoides	Reação de Shinoda	(+++)	(-)
Esteroides e triterpenoides	Reação de Liebermann-Burchard	(++)	(++)
Alcaloides	Buchardat/Mayer/Drangendorff	(-)	(-)
Saponinas	Espuma	(+)	Não realizado
Legenda: (-) ne	gativo; (+) fracamente positivo; ((++) moderadamente	positivo: (++-

Legenda: (-) negativo; (+) fracamente positivo; (++) moderadamente positivo; (+++) fortemente positivo.

Santa Luzia é um município enquadrado como semiárido, a exemplo dos anos de 2012 e 2013, que apresentaram valores de precipitação bem menores quando comparados com o ano de 2011 (PAULA; ALMEIDA, 2013).

Diferentemente, Puxinanã apresenta períodos chuvosos mais frequentes e pela altitude mais elevada, possui temperatura média menor, sendo esta 24,9°C em 2016, segundo informações colhidas por estações meteorológicas do Aeroporto Presidente João Suassuna (SBKG) (O TEMPO, 2017).

A incidência de radiação ultravioleta e solos de baixa fertilidade química proporcionam maiores níveis de fenóis totais, como flavonoides, taninos, quinonas (JACOBSON et al., 2005; GOBBO-NETO; LOPES, 2007). Com isso, infere-se que a planta oriunda de Santa Luzia, por ter sofrido maior exposição à radiação solar e ter sido sujeita a maiores temperaturas, apresentou maior estímulo para produção de flavonoides, logo, maior probabildiade de possuir tais metabólitos. Contrariamente, a proveniente de Puxinanã, demonstrou resultado negativo para flavonoides por não se encontrar nas mesmas condições da anterior, estando em um local de

maior altitude (menor temperatura) e maior aporte de chuvas.

Como demonstrado por Reis (2014) e Dantas (2015) a espécie em estudo, *Varronia globosa*, apresenta boa atividade anti-inflamatória; e como já citado, a espécie é usada no tratamento de variadas sintomas e patologias (dores, inflamações, hipertensão, desordens musculares), esses efeitos benéficos de *V. globosa* podem estar associados à presença de flavonoides. Os flavonoides são extensamente estudados como detentores de diversas propriedades farmacológicas, como: atividade antiviral, antioxidante, anti-inflamatória, analgésica e antitumoral (ZUANAZZI; MONTANHA; ZUCOLOTTO, 2017).

Sabendo disso, o consumo medicinal de plantas se torna problemático pelo fato da utilização se proceder "às escuras", ou seja, o indivíduo pode fazer uso de uma planta que não possui o metabólito secundário capaz de promover o efeito terapêutico.

Como contextualização, os resultados obtidos mostraram que não foi constada a presença de flavonoides em *V. globosa* coletada em Puxinanã, logo, infere-se que o uso de plantas oriundas desta região teria efeito reduzido ou seria ineficaz no tratamento de doenças de seus usuários. Esse fato pode ainda ser extrapolado à outas espécies e outras regiões em que são encontradas.

4. CONCLUSÕES

Fatores ambientais influenciam na produção de metabólitos secundários, e consequentemente o uso etnofarmacológico é prejudicado, sendo muitos desses metabólitos responsáveis por efeitos biológicos benéficos.

O EEB da planta coletada no município de Puxinanã apresentou resultado negativo para presença de flavonoides, diferentemente da coleta anterior, em Santa Luzia; inferindo a interferência de fatores mesológicos no metabolismo de compostos especiais. Portanto, usuários da região não poderiam se beneficiar dos efeitos de flavonoides, acarretando em um tratamento ineficaz. Estudos farmacológicos e fitoquímicos mais aprofundados da espécie são interessantes para investigar até onde condições ambientais podem influir no tratamento com plantas medicinais.

5. REFERÊNCIAS

ALBUQUERQUE, U.P. et al. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. **J. Ethnopharmacol.**, v.114, n.3, p.325-354, 2007. (83) 3322.3222

BARBOSA, W.L.R. Manual para Análise Fitoquímica e Cromatográfica de Extratos Vegetais, Belém – PA: Revista Científica da UFPA, v.4, 2001.

DANTAS, C.A.G. Investigação fitoquímica e avaliação do potencial tóxico e antiinflamatório de *Varronia globosa* Jacq. (Boraginaceae). 2015. 63 f. Trabalho de Conclusão de Curso – Curso de Farmácia, Universidade Estadual da Paraíba, Campina Grande. 2015.

GOBBO-NETO, L; LOPES, N.P. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. **Quim. Nova**. São Paulo, v.30, n.2, p.374-381, 2007.

GODÍNEZ-CARABALLO, D.; VOLPATO, G. Plantas medicinales que se venden en el mercado El Río, Camagüey, Cuba. **Rev. Mex. Biodivers.**, v.79, n.1, p.217-241, 2008. IFEOMA, O.; OLUWAKANYINSOLA, S. Screening of herbal medicines for potential toxicities. In: **New Insights into Toxicity and Drug Testing**. InTech, 2013.

JACOBSON. T. K. B. et al. Influência de fatores edáficos na produção de fenóis totais e taninos de duas espécies de barbatimão (*Stryphnodendron* sp.). **Pesquisa Agropecuária Tropical**, v. 35 n. 3, 2005.

KREIS, W.; MUNKERT, J.; PÁDUA, R.M. Biossíntese de metabólitos primários e secundários. In: SIMÕES, C.M.O. et al. Farmacognosia: do Produto Natural ao Medicamento. Porto Alegre: Artmed Editora, 2017. p. 147-166.

MACIEL, V. **Uso de fitoterápicos e plantas medicinais cresce no SUS.** jun. 2016. Disponível em: < http://portalsaude.saude.gov.br/index.php/cidadao/principal/agencia-saude/24205-uso-de-fitoterapicos-e-plantas-medicinais-cresce-no-sus>. Acesso em: 30 mai. 2017.

MARTÍN, S.M. et al. Efecto diurético de la tintura al 50% de *Varronia globosa* Jacq. (yerba de la sangre) en ratas. **Rev. Cubana Plant. Med.**, v.16, n.2, p.174-182, 2011.

MATIAS, E.F.F. et al. The genus *Cordia*: botanists, ethno, chemical and pharmacological aspects. **Rev. Bras. Farmacogn.**, v.25, n.5, p.542-552, 2015.

MONTELES, R.; PINHEIRO, C.U.B. Plantas medicinais em um quilombo maranhense: uma perspectiva etnobotânica. **Revista de Biologia e Ciências da Terra**, v. 7, n. 2, p. 38-48, 2007.

O TEMPO. Disponível em: < https://www.tempo.pt/puxinana.htm?d=historico >Acesso em: 19 nov. 2017

PAULA, A.C.R.; ALMEIDA, I.C.S. Aspectos hidroclimatológicos e crise no abastecimento de água em Santa Luzia – PB. *In:* I Workshop Internacional Sobre Água no Semiárido Brasileiro, 2013, Campina Grande – PB. Anais Workshop Internacional sobre Água no Semiárido Brasileiro. Campina Grande: Realize, 2013.

PEIXOTO-SOBRINHO, T.J.S. et al. Phytochemical screening and antibacterial activity of four Cnidoscolus species (Euphorbiaceae) against

(83) 3322.3222 contato@conbracis.com.br www.conbracis.com.br

standard strains and clinical isolates. **J. Med. Plants Res.**, v.6, n.2, p.3742-3748, 2012.

REIS, M.M.L. Avaliação Fitoquímica e potencial farmacológico do extrato etanólico bruto do caule de *Varronia globosa* (Boraginaceae). 2014. 40 f. Trabalho de Conclusão de Curso – Curso de Farmácia, Universidade Estadual da Paraíba, Campina Grande. 2014.

SILVA, S.A.S. et al. Flavonoids from *Cordia globosa*. **Biochem. Syst. Ecol.**, v.32, n.3, p.359-361, 2004.

ZUANAZZI, J.A.S.; MONATANHA, J.A.; ZUCOLOTTO, S.M. Flavonoides. In: SIMÕES, C.M.O. et al. Farmacognosia: do Produto Natural ao Medicamento. Porto Alegre: Artmed Editora, 2017. p. 209-233.