

DROGAS ESTATINAS E NÃO ESTATINAS: UMA REVISÃO BIBLIOGRÁFICA

Edgar Paulo da Silva Neto; Shalom Pôrto de Oliveira Assis

Universidade Católica de Pernambuco; shalomporto@yahoo.com.br; edgarpauloneto@gmail.com

INTRODUÇÃO

O crescimento e o envelhecimento da população mundial têm aumentado a mortalidade por doenças cardiovasculares ateroscleróticas em todo o mundo (GBM, 2013). Essas doenças são caracterizadas pelo acúmulo de lipídios e de tecido conectivo fibroso na parede arterial, que é uma das principais causas de infarto do miocárdio e derrame. A hiperlipidemia é o fator de risco mais importante para o desenvolvimento de doenças cardiovasculares. Atualmente, os fármacos de primeira escolha para o tratamento das dislipidemias são as estatinas. Contudo existem algumas opções para o tratamento de dislipidemias e ateroscleroses, que não são fundamentadas no uso das estatinas (TANDRA & VUPPALANCHI, 2009). Os objetivos do presente estudo são destacar as drogas estatinas e as principais não estatinas utilizadas na clínica médica para o tratamento das hiperlipidemias e mostrar seus mecanismos de ação.

METODOLOGIA

O presente trabalho consiste em uma revisão bibliográfica elaborada através de pesquisa na Biblioteca Virtual de Saúde (BVS), sendo recuperados 10 trabalhos publicados entre 2012 e 2017 (porém sendo mantidas as referências de origem, que cada autor, utilizou na construção de cada artigo selecionado). Foram considerados textos em inglês e português de acordo com a pertinência dos descritores. A proposta foi oferecer informações que proporcionem o conhecimento acerca do mecanismo de ação das drogas estatinas e principais drogas não estatinas que estão disponíveis para o tratamento das hiperlipidemias, cuja principal e desejável repercussão clínica é a redução dos excessos lipídicos no plasma sanguíneo, com consequente, minimização dos riscos de desenvolvimento doenças coronarianas.

RESULTADOS E DISCUSSÃO

A hiperlipidemia consiste na elevação das concentrações séricas de lipídios na corrente sanguínea. Os excessos de lipídios, obtidos a partir de dietas hipercalóricas, por exemplo, são transportados na forma de lipoproteínas que podem ser classificadas em cinco tipos de acordo com a densidade que apresentarem: quilomícrons, lipoproteína de densidade muito baixa (VLDL), lipoproteína de baixa densidade (LDL), lipoproteína de densidade intermediária (IDL) e lipoproteína de alta densidade (HDL) (COFAN *et al.*, 2006). As drogas de escolha para a redução plasmática de alguns desses lipídios estão distribuídas em várias classes farmacológicas. Uma dessas classes são as estatinas, composta por drogas que exibem o mesmo mecanismo de ação. Já o grupo das drogas não estatinas é bastante diverso, sendo constituído pelos ativadores de PPARα (receptor ativador de proliferação de peroxissomos), inibidores da absorção intestinal do colesterol, sequestradores de ácidos biliares, ácidos graxos ômega-3, niacina, inibidores da CETP (proteína transferidora de colesterol éster) e inibidores da PCSK9 (proteína convertase subtilisina/kexina tipo 9). Cada classe de drogas que compõe esse grupo (drogas não estatinas) atuam biologicamente de forma diferente, nisso diferindo das estatinas.

A enzima 3-hidroxi-3-metilglutaril coenzima A (HMG-CoA) redutase catalisa a conversão do HMG-CoA em mevalonato, um percussor do colesterol. As estatinas compreendem uma classe de fármacos hipolipemiantes que atuam inibindo a enzima 3-hidroxi-3-metilglutaril coenzima A (HMG-CoA) redutase impedindo a ocorrência dos primeiros passos da biossíntese do colesterol (CAMPO & CARVALHO, 2007).

Embora as estatinas sejam as drogas anti-hiperlipidêmicas mais prescritas na prática clínica, existem outras opções terapêuticas que podem ser usadas isoladamente ou em associação com as estatinas, potencializando o efeito hipolipemiante desses fármacos.

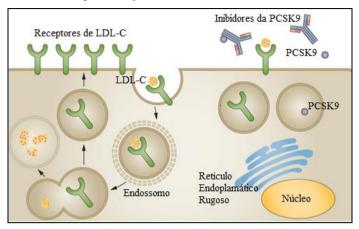
Os fibratos são drogas que ativam os PPAR-α. Quando ativados, esses receptores estimulam o aumento da beta-oxidação de ácidos graxos nas mitocôndrias e nos peroxissomos, diminuindo, portanto, a síntese hepática de triglicerídeos. Estudos mostram que tais receptores são expressos em abundância em tecidos onde as taxas de oxidação de ácidos graxos são elevadas, como, fígado, gordura marrom e o coração (GOTO; LEE; TERAMINAMI, *et al.*, 2011).

A ezetimiba é outra opção terapêutica não estatina, cujo efeito hipolipêmico resulta da inibição da absorção do colesterol na borda em escova do intestino delgado resultando em

redução moderada de LDL-colesterol (16% - 24%) (CANNON; BLAZING; GIUGLIANO, *et al.*, 2015).

Já os agentes sequestradores de ácidos biliares inibem a reabsorção dos ácidos biliares por se ligarem a eles no intestino. Como consequência, os ácidos biliares passam a ser produzidos a partir do colesterol livre, o que provoca a redução desse composto na corrente sanguínea. Observa-se também o aumento da expressão de receptores de LDL-colesterol ocasionando um aumento da captação plasmática dessa lipoproteína (EINARSSSSON; ERICSSON; EWERTH, et al., 1991).

Por sua vez, a niacina age bloqueando a diacilglicerol aciltranferase (DGAT-2), enzima que catalisa a última etapa da formação dos triglicerídeos (TG) nos hepatócitos. Esse bloqueio enzimático reduz a concentração sérica de TG e diminui o fluxo de ácidos graxos livres para o tecido adiposo (KAMANNA & KASHYAP, 2008).


Os ácidos graxos ômega-3 expressam sua ação hipolipemiante diminuindo a síntese hepática de TG (MADSEN, et al., 1999), inibindo a lipogênese (DAVIDSON, 2006) e estimulando a atividade da enzima lipoproteína lipase (WEINTRAUB, et al., 1988), responsável pela hidrólise dos TG. Essa série de eventos promovida pelos ácidos graxos ômega-3 proporcionam uma redução da trigliceridemia. Ainda é importante destacar o efeito anti-inflamatório desses agentes hipolipemiantes, pois eles são responsáveis pela estabilização das placas ateroscleróticas, o que minimiza os riscos de infarto (VON SCHACKY et al., 1999; THIES, et al., 2003).

Os inibidores da CETP também se mostram úteis na redução da trigliceridemia. Eles consistem em proteínas que favorecem a transferência de ésteres de colesterol e TG entre as lipoproteínas, aumentando os TG nas moléculas de HDL. O bloqueio da CETP resulta no aumento do HDL-colesterol e na diminuição do VLDL-colesterol e LDL-colesterol (WHAYNE, 2009).

Por fim, ainda existem os inibidores da PCSK9 que são uma alternativa promissora para o tratamento da hipercolesterolemia, sobretudo para os pacientes que não toleram os efeitos adversos das estatinas (CORRAO, *et al.*, 2010). Essas proteínas atuam induzindo a degradação lisossomal dos receptores do LDL-colesterol dentro dos hepatócitos. Sendo assim, os anticorpos monoclonais desenvolvidos para inibirem a ação da PCSK9 impedem, em última instância, a degradação desses receptores, promovendo a externalização destes nos hepatócitos. Esse fato, aumenta a incorporação do LDL-colesterol circulante reduzindo, consequentemente, seus níveis séricos (SEIDAH; PRAT, 2012).

Figura 1. Ação dos inibidores da PCSK9

Fonte: Disponível em: http://www.google.com.br/search>. Adaptada. Acesso em: 27 abr. 2017.

CONCLUSÃO

É de grande importância o conhecimento dos mecanismos de ação dos principais fármacos com função hipolipemiante, pois a partir dele é possível estimar a viabilidade de cada droga na prática clínica. Essa viabilidade envolve parâmetros importantes, como efeitos adversos e custo de produção. No Brasil, onde as doenças cardiovasculares respondem por um terço das mortes e são as principais causas de gastos com assistência médica, conhecer o mecanismo biológico pelo qual atua cada droga pode servir para se obter meios menos onerosos de sintetizar fármacos indispensáveis como os hipolipemiantes (ALBERTI et al., 2006).

REFERÊNCIAS BIBLIOGRÁFICAS

ALBERTI, K. G.; ZIMMET, P.; SHAW, J. Metabolic syndrome - a new world-wide definition. A Consensus Statement from the International Diabetes federation. **Diabetic Medicine**, v. 23, n. 5, p. 80-469, 2006.

CAMPO, V. L.; CARVALHO, I. Estatinas hipolipêmicas e novas tendências terapêuticas. **Química Nova**, 30, 425-430, 2007.

CANNON, C. P., BLAZING, M. A., GIUGLIANO, R. P. IMPROVE-IT Investigators. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med.

372:2387–2397, 2015.

COFAN, F.; VELA, E.; CLERIES, M. Analysis of dyslipidemia in patients on chronic hemodialysis in Catalonia. **Atherosclerosis**, v. 84, n. 1, p. 94-102, 2006.

CORRAO, G.; CONTI, V.; MERLINO, L.; CATAPANO, A. L; MANCIA, G. Results of a retrospective database analysis of adherence to statin therapy and risk of nonfatal ischemic heart disease in daily clinical practice in Italy. **Clin. Ther.** 32(2):300–310, 2010.

DAVIDSON, M. H. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. **Am. J. Cardiol.** 98:27i–33i, 2006.

EINARSSSSON, K.; ERICSSON, S.; EWERTH, S. Bile acid sequestransts: mechanisms of action on bile acid and cholesterol metabolism. **Eur. J. Clin. Pharmacol.** 40 (Suppl 1): S53 – S58, 1991.

GBD 2013. Mortality and Causes of Death Collaborators. Global, regional and national age-sex specific all-cause and cause-specific mortality for 240 causes of death 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. **Lancet.** 385(9963):117-71, 2015.

KAMANNA, V. S.; KASHYAP, M. L. Mechanism of action of niacin. **Am. J. Cardiol**. 101:20B-26BB, 2008.

MADSEN, L.; RUSTAN, A.C.; VAAGENES, H.; BERGE, K.; DYRØY, E.; BERGE, R. K. Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. **Lipids**. 34:951–963, 2008.

SEIDAH, N. G.; PRAT, A. The biology and therapeutic targeting of the proprotein convertases. **Nat. Rev. Drug Discov.** 11, 367–383, 2012.

VON SCHACKY, C.; ANGERER, P.; KOTHNY, W.; THEISEN, K.; MUDRA, H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, doubleblind, placebo-controlled trial. **Ann Intern Med**. 130:554–562, 1999.

TAMAKI, N.; UENO, H.; MORINAGA, Y.; SHIIYA, T.; NAKAZATO, M. Ezetimibe ameliorates atherosclerotic and inflammatory markers, atherogenic lipid profiles, insulin sensitivity, and liver dysfunction in Japanese patients with hypercholesterolemia. **J. Atherosclerosis & Thrombosis**. 19, 532-538, 2012.

TANDRA, S.; VUPPALANCHI, R. Use of statins in pacients with liver disease. **Current Treatment Options in Cardiovascular**. 11, 272-278, 2009.

WHAYNE, T. F. Jr. High-density lipoprotein cholesterol: Current perspective for clinicians. **Angiology**. 60, 644-649, 2009.

WEINTRAUB, M. S; ZECHNER, R.; BROWN, A.; EISENBERG, S.; BRESLOW, J. L. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. **J. Clin. Invest.** 82:1884–1893, 1988.

