

PROJETO DE SEDIMENTADOR CONTÍNUO A PARTIR DE ENSAIOS DE PROVETA COM SUSPENSÃO DE CARBONATO DE CÁLCIO UTILIZANDO O MÉTODO DE TALMADGE E FITCH

Guimarães, L. de M. J. (1); Oliveira, L. G. (Orientador)

Universidade Federal de Campina Grande lucasjurema11@gmail.com, laercio.gomes@ufcg.edu.br

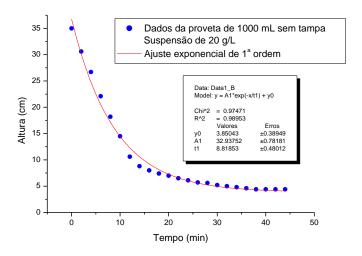
INTRODUÇÃO

A sedimentação é um processo de separação sólido-líquido que se utiliza da força gravitacional para ocorrer, baseando-se na diferença de densidade entre os componentes sólidos ou até em outras propriedades, como, por exemplo, o diâmetro das partículas, para separá-los (FRANÇA, 2007). Os equipamentos que se utilizam de tal operação para a separação são classificados pelo produto final mais vantajoso, sendo estes o espessador (usado para obter polpa mais concentrada) e o clarificador (utilizado para obter polpas mais diluídas, sendo a fase completamente líquida) (REIS, 2010).

Os objetivos foram:

- Obter dados de altura da suspensão em função do tempo em experimentos de proveta;
- Analisar a influência da altura da proveta num ensaio de batelada sob as estimativas de projeto do sedimentador;
- Analisar a influência da concentração das suspensões de carbonato de cálcio em ensaios de batelada sobre os cálculos de projeto;
- Analisar a influência da vedação completa da suspensão com o ambiente externo;
- Analisar o comportamento da taxa de sedimentação em função do tempo.

METODOLOGIA


Os ensaios de sedimentação em proveta desta pesquisa foram realizados no Laboratório de Processos Químicos, da Unidade Acadêmica de Engenharia Química, do Centro de Ciência e Tecnologia, da Universidade Federal de Campina Grande (UAEQ/CCT/UFCG). Foram preparadas analiticamente duas suspensões de carbonato de cálcio em concentrações diferentes: 10 e 20 g/L. Os ensaios foram realizados em quatro provetas volumétricas diferentes. Mesmo França (2007) enfatizando que o ideal é a realização dos ensaios em provetas de 2000 mL, optou-se, nessa pesquisa, realiza-los em provetas de 1000, 500, 250 e 100 mL. Escolhida a capacidade da proveta e a concentração a ser utilizada, agitou-se o balão objetivando a homogeneização, em seguida, despejou-se a suspensão na proveta e o experimento iniciado. Com o auxílio de uma escala milimétrica mediu-se a altura inicial da suspensão na proveta. Durante a sedimentação mediu-se as alturas em intervalos de tempo pré-determinado de 2 minutos. Adotou-se que a sedimentação havia atingido o equilíbrio, quando a medida da altura se repetia três vezes. Todos os ensaios foram realizados em triplicata para garantir a reprodutibilidade dos dados. Os valores médios foram usados para avaliar o projeto do sedimentador e para as duas maiores provetas foi feito o calculo da taxa de deposição ponto-a-ponto.

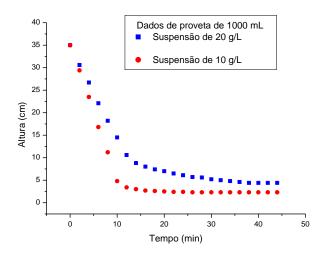
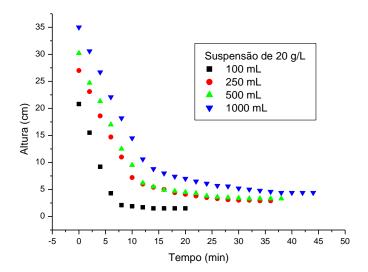
RESULTADOS E DISCUSSÃO

A partir dos resultados dos ensaios de proveta das suspensões de carbonato de cálcio preparadas, observou-se que o comportamento da altura da interface superior em função do tempo é sempre bem representado por um decaimento exponencial de primeira ordem, como verificado na Figura 1 onde utilizou-se a suspensão de 20 g/L e proveta de 1000 mL. O coeficiente de correlação do ajuste foi de 0,98953 e os parâmetros ajustados são estatisticamente significantes. Comportamento semelhante foi observado nos demais ensaios executados (Figuras 2 a 6).

Figura 1: Curva de sedimentação de suspensão de CaCO₃ na proveta de 1000 mL com concentração de 20 g/L com ajuste exponencial

Na Figura 2 observa-se que fixando-se a dimensão da proveta (1000 mL) e aumentando-se a concentração da suspensão, aumenta o tempo de deposição, tornando, também, as mudanças de regime de sedimentação mais visíveis.

Figura 2: Comportamento da suspensão em diferentes concentrações para a proveta de 1000 mL

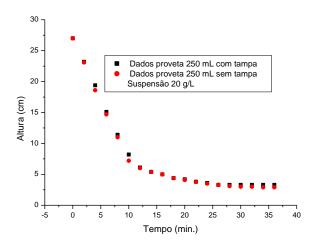
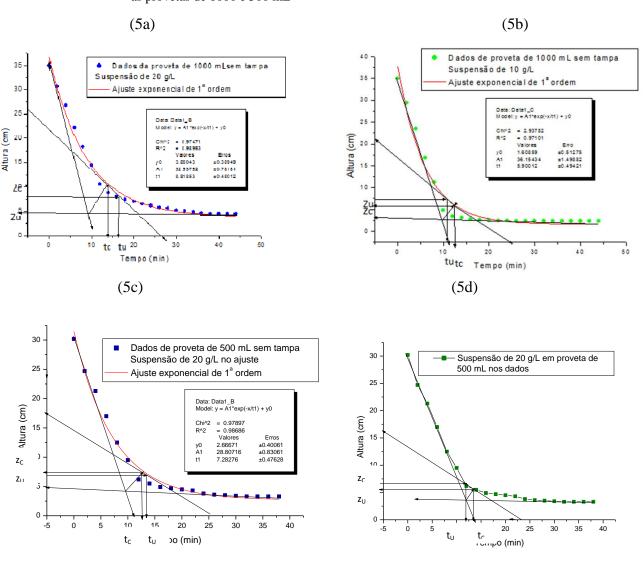


Figura 3: Comportamento da suspensão em diferentes áreas de deposição para suspensão de 20 g/L

Na Figura 3 observa-se que fixando-se a concentração da suspensão e utilizando-se provetas de capacidades distintas, o tempo de sedimentação aumenta conforme aumenta a capacidade volumétrica da proveta. Observa-se ainda que o comportamento das curvas não sofre influência do tamanho da proveta.

Figura 4: Comparação entre o comportamento da altura versus tempo para a proveta tampada e aberta



Na Figura 4 apresenta-se os resultados de ensaios de sedimentação com a suspensão de 20 g/L para a proveta de 250 mL com e sem vedação. Nota-se que a vedação da proveta não provoca mudanças significativas nos resultados uma vez que, ocorre uma superposição das curvas de sedimentação.

Com o uso dos procedimentos descritos no método de Talmadge e Fitch (1955), foi possível obter os valores das áreas do sedimentador para cada um dos ensaios nas provetas de 1000 e 500 mL operando com uma vazão de alimentação de 142 $\rm m^3.h^{-1}$ e concentração da fase densa ($\rm C_u$) admitida como 4,4 vezes a concentração inicial ($\rm C_0$) (Foust. et al, 1982).

Figuras 5a, 5b, 5c e 5d: Método de Talmadge e Fitch aplicado aos dados obtidos para as concentrações de 10 e 20 g.L⁻¹ as provetas de 1000 e 500 mL

Na Tabela 1 constam os resultados da aplicação do método de Talmadge e Fitch, para o cálculo da área sedimentador usando as suspensões de 10 e 20 g.L⁻¹ e provetas de 500 e 1000 mL. Na proveta de 1000 mL o método foi aplicado diretamente na curva de ajuste (linha vermelha). Já na proveta de 500 mL, o método foi aplicado tanto na curva de ajuste quanto nos dados experimentais.

Tabela 1: Dados para o projeto do sedimentador

Suspensão	20 g/L			10 g/L		
Proveta	1000 mL	500 mL no ajuste	500 mL nos dados	1000 mL	500 mL no ajuste	500 mL nos
						dados
Z _U (cm)	7,9545	6,8636	6,8636	7,9545	6,8636	6,8636
t _U (min)	16,7464	13,4463	11,896	10,7931	7,1894	4,40
$A (m^2)$	112,92	105,07	92,96	72,78	56,18	34,38
D (m)	11,99	11,57	10,88	9,63	8,45	5,51

É importante salientar que, por se tratar de um método manual, os resultados obtidos estão sujeitos a grandes desvios, visto que há diferenças na forma em que cada indivíduo os executa. Ao se comparar as áreas calculadas entre os métodos, nota-se um desvio em relação a curva ajuste de 5,96 e 34,79% para as suspensões de 20 e 10 g/L respectivamente. Comparando-se o valor da área calculada neste trabalho para a suspensão de 10 g/L na proveta de 1000 mL com o obtido por Simões (2014) pelo mesmo método e condições de operação verifica-se um desvio de 14,20%.

Na Figura 6, estão representados os resultados de velocidade de deposição dos sólidos em função do tempo. Visando analisar o comportamento da taxa de sedimentação, foram calculados as taxas de sedimentação por duas formas: a partir da diferenciação da equação de ajuste referente à Figura 1 (pontos em azul), a partir da variação da altura em função do tempo para cada intervalo de 2 minutos (pontos em verde) e o ajuste da mesma (em vermelho). Da Figura 6, fica claro que os resultados obtidos através da diferenciação da curva se aproximam mais do modelo proposto.

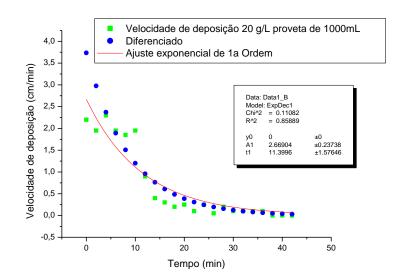


Figura 6: Taxa de deposição para proveta de 1000 mL suspensão de 20 g/L

CONCLUSÕES

Suspensões menos concentradas apresentaram maiores taxas de sedimentação, logo, necessitam de sedimentadores com menores diâmetros;

Com o decorrer do tempo, a velocidade de sedimentação tende a diminuir, devido, principalmente à formação da zona de compactação;

O diâmetro da proveta também influencia sobre a formação da zona de compactação, visto que o tempo mínimo para a formação da mesma em provetas de áreas maiores é maior;

Os ajustes paramétricos realizados nas curvas de sedimentação obtidas são melhores na suspensão mais concentrada, visto que as velocidades de sedimentação são mais baixas, tornando mais nítidas as leituras experimentais;

A vedação na proveta não apresentou nenhuma influência sobre a velocidade de sedimentação, visto que não altera nenhuma condição termodinâmica;

Desvio de 14,20% no valor da área calculada neste trabalho para a suspensão de 10 g/L na proveta de 1000 mL com o obtido por Simões foi verificado.

REFERÊNCIAS BIBLIOGRÁFICAS

- AROUCA, F. O. *Uma contribuição ao Estudo da sedimentação Gravitacional em Batelada*. Tese (doutorado). Programa de pós graduação em Engenharia Química. Universidade Federal de Uberlândia, 2007.
- CONCHA, F. A. Separacion sólido-fluido em precesamiento de minerals. Departamento de Engenharia de Minas, UFRGS, Porto Alegre, 1986.
- FOUST, A. S.; WENZEL, L. A; MAUS, L.; ANDERSEN, L. B. Princípios das Operações Unitárias. 2. ed. [S.I.]: Editoral LTC, 1982.
- FRANÇA, S. C. A. *Ensaios de sedimentação*. Comunicação Técnica elaborada para o Livro de Tratamento de Tratamento de Minérios. cap.23 p.393, Rio de Janeiro, 2007.
- KYNCH, G. J. A theory of sedimentation. *Trans. Amer. Soc.*, p 166-176, 1952.
- LUZ, A. H. S; MUFARREJ, M. P; SILVA, W. S. *Separação sólido-líquido*. Dissertação (mestrado). Universidade Federal do Pará, 2010.
- REIS, K, M. *Dimensionamento de Espessadores*. Dissertação (Especialização em Beneficiamento Mineral) Programa de Engenharia de Minas. Universidade Federal de Ouro Preto, 2010.
- SIMÕES, V. N. Projeto de sedimentador contínuo a partir de ensaio de proveta: Estudo da influência da concentração da suspensão de carbonato de cálcio e dimensões da proveta. 2014.64p. Trabalho de Conclusão de Curso (Curso de Engenharia Química). Universidade Federal de Campina Grande, Campina Grande, 2014.
- TALMAGE, W. P.; FITCH, E. B. Determining thickener unitareas. *Ind. Eng. Chem.*, p.38-41, 1955.