Déficit acumulado de oxigênio durante o desempenho de nado em 50, 100 e 200 metros entre nadadores homens e mulheres

Bravo, V.A,. Simionato, A.R., Oliveira, J.G.S.V., Siqueira, L.OC., Pestana, D., Pessôa Filho D.M.,

Universidade Estadual Paulista (UNESP), Faculdade de Ciências (FC), Bauru, São Paulo, Brasil

Resumo

A capacidade de desempenho de nado em distâncias curtas (50m e 100m) e média-curta (200m), com tempo de duração entre 30 segundos a 2 minutos, tendem a demandar uma parcela de contribuíção anaeróbia de ~70, ~50 e ~30% da energia total respectiva à cada distância. Essa demanda anaeróbia tende a representar uma necessidade energética que atingiaria, respectivamente, ~170%, ~140% e ~109% da taxa oxidativa máxima (VO_{2max}), quando analisada pelo método do déficit de oxigênio acumulado (AOD). Estudos que aplicaram esse método para o diagnóstico da contribuição anaeróbia durante esses eventos de curta duração e elevada intensidade de nado, evidenciaram um AOD equivalente à ~2,3, ~2,8 e ~3,2 LO, respectivamente para as distâncias de 50, 100 e 200 metros, mas obtiveram tais informações em grupos de nadadores homens, que variavam em nível de habilidade e com recursos tecnológicos não compátiveis à tecnologia respiração-a-respiiração de coleta de gases. O presente estudo aplicou o método AOD para avaliar a demanda anaeróbia em eventos de 50, 100 e 200 metros entre nadadores de ambos os sexos, empregando sistema respiração-a-respiração durante o desempenho de nado em cada distância. Foram avaliados oito homens, com 16,8 anos ($\pm 2,3$), 179,5 cm ($\pm 7,6$) e 74,4 kg ($\pm 10,2$); e oito mulheres com 15,5 anos $(\pm 3,3)$, 160,9 cm $(\pm 5,1)$ e 52,0 kg $(\pm 4,6)$. Todos realizaram o desempenho máximo para as distâncias de 50, 100 e 200m para a determinação do O2 acumulado. Após 24 horas, os nadadores desempenharam um teste incremental escalonado máximo e descontínuo (TIE: 6x250m e 1x200m, 50-100% da v200m) para a avaliação do VO_{2max} e obtenção da relação VO2 vs. velocidade de nado e para a estimativa da demanda de O2 nas velocidades correspondentes ao 50, 100 e 200m. A permuta gasosa pulmonar foi analisada respiração-a-respiração durante o TIE por uma unidade metabólica automatizada e portátil (CPET K4b2), que esteve acoplada a um snorkel específico e validado na natação (new-AquaTrainer®). A diferença entre O2 estima e acumulado forneceu o AOD. O teste-t de Student (não-pareado) comparou as médias de AOD entre homens e mulheres para as distâncias de 50, 100 e 200m. O nível de significância foi estabelecido em ρ≤0,05. Os valores de VO_{2max} atingiram 4075,7 ml×min (±347,3) em homens e para as mulheres foi 3052,4 ml×min⁻¹ (±374,0). Os valores médios de AOD para 50m não diferiu (p = 0,88) entre homens (1,58 \pm 0,31 LO₂) e mulheres (1,56 \pm 0,29 LO_2), tampouco para 100m (H: 2,29±0,69 LO_2 vs. M: 2,09±0,67 LO_2 , p = 0,60) ou 200m (H: $2,57\pm0,77$ LO₂ vs. M: $2,38\pm0,88$ LO₂, p = 0,66). Os valores encontrados para homens e mulheres são similares aqueles reportados para desepenhos até 30s, 60s e 120-180s. Assim, não há diferenças entre os sexos, quanto à contribuição de energia anaeróbia para o desempenho de curtas distâncias. Isso sugere que o treinamento de alta intensidade não deve diferir entre os sexos, face às similaridades da exigência anaeróbia. Apoio: FAPESP (2016/17735-1).

E-mail: valterovarb@hotmail.com