

MOMENTOS EM LAJES MACIÇAS DE ACORDO COM OS MÉTODOS DE MARCUS, BARES, CZERNY E ANALOGIA DE GRELHA

Daniel Pessanha de Queiroz ¹

Willian Oliveira Dias ²

Aarão Ferreira Lima Neto ³

RESUMO

Esta pesquisa discorre acerca do cálculo dos esforços de momentos positivos e negativos e análise crítica de lajes maciças utilizando os métodos de Marcus, Bares, Czerny e Analogia de Grelha. A metodologia consistiu em determinar as medidas e cargas das lajes maciças, definir a estrutura e a concepção da planta baixa, identificar em que caso estão situadas as lajes e por fim calcular os momentos máximos positivos e negativos de acordo com os métodos supracitados. Os resultados de ambos os métodos foram satisfatórios, entretanto, nota-se que o de Analogia de Grelha possui considerações mais aprofundadas acerca da determinação dos esforços e das vinculações, logo, possuí valores mais condizentes com a realidade da estrutura. Por fim é de suma importância estudos comparativos entre métodos simplificados e analíticos, evidenciando a assertividade de métodos antigos e bem difundidos com novos utilizando de tecnologias sofisticas.

Palavras-chave: Concreto armado, Estruturas, Esforços, Vinculações.

INTRODUÇÃO

Esta pesquisa discorre acerca do cálculo dos esforços de momentos positivos e negativos e análise crítica de lajes maciças utilizando os métodos de Marcus, Bares, Czerny e Analogia de Grelha.

Segundo o American Concrete Institute – ACI laje é uma camada moldada de concreto liso ou armado, plana (horizontal ou quase), geralmente de espessura uniforme, podendo ter espessura variável, e suportada por vigas, pilares, paredes, pisos ou outras estruturas.

Araújo (2008) afirma que dimensionar lajes de concreto armado é uma das atividades de maior complexidade dentro do projeto estrutural de edifícios. Tal dificuldade deve-se a interação/ligação entre as lajes e vigas, o que ocasiona a redistribuição de esforços conforme a rigidez relativa dos elementos citados.

O entendimento e utilização de métodos de cálculos de lajes maciças simplificados por meio de tabelas como o de Marcus, Bares e Czerny ambos objetos deste estudo, possibilita aos calculistas a compreensão do mecanismo da estrutura garantindo maior assertividade aos

¹ Mestrando em Engenharia Civil na Universidade Federal do Pará - UFPA, daniel pessanha99@hotmail.com;

² Graduando em Engenharia Civil na UNINASSAU de Campina Grande - PB, williandias.eng@gmail.com;

³ Professor Orientador na UFPA e Doutor pela Universidade de Brasília - UnB, aaraol@yahoo.com.br;

projetos estruturais. Araújo (2008) relata que estes métodos são utilizados desde a origem do termo projeto estrutural e têm sido testados e comprovados seguros através de estruturas construídas que se mantiveram estáveis e com bom desempenho em toda sua vida útil. No entanto, eles possuem restrições em virtude da desconsideração da interação entre a lajes e a vigas, considerando que as vinculações das lajes são engastadas, rotuladas e livres, logo não atribui a rigidez das vigas.

Conforme Justo (2010) as novas tecnologias contribuem com os avanços na indústria da construção civil, entre outros fatores, com a criação de softwares de dimensionamentos estruturais sofisticados, garantindo maior agilidade, produtividade e precisão nos resultados. Dentre esses métodos computacionais, é possível destacar o de analogia de grelha através da utilização do software Eberick. Notadamente, para obter resultados precisos deve-se recorrer a análise não-linear, ainda assim possuem limitações, pois são dependentes dos valores adotados para os parâmetros do modelo não-linear.

Nesse contexto, o objetivo do presente trabalho é calcular os momentos fletores máximos positivos e negativos de um conjunto de lajes maciças a partir de um projeto definido e analisa-los comparando os valores dos esforços obtidos. Foi utilizado as tabelas dos respectivos métodos de Marcus, Bares, Czerny e o software Eberick V9 para o processo da Analogia de Grelha.

A metodologia consistiu em determinar as medidas e cargas das lajes maciças, definir a estrutura analisada e a concepção da planta baixa, identificar em que caso estão situadas as lajes e por fim calcular os momentos maximos positivos e negativos de acordo com os métodos de Marcus, Bares, Czerny e Analogia de Grelha.

Os resultados de ambos os métodos foram satisfatórios, entretanto, nota-se que o de Analogia de Grelha possui considerações mais aprofundadas acerca da determinação dos esforços e das vinculações, logo, possuí valores mais condizentes com a realidade da estrutura.

Por fim é de suma importância estudos comparativos entre métodos simplificados e analíticos, evidenciando a assertividade de métodos antigos e bem difundido com novos utilizando de tecnologias sofisticas.

METODOLOGIA

1º Passo: Determinação das medidas e cargas das lajes maciças utilizando a NBR 6120/2018.

• Lajes com h = 10 cm e fck = 25 MPa.

Para todas as lajes devem ser utilizadas as mesmas cargas atuantes, sendo elas:

• Cargas Permanentes (g):

Peso próprio da laje = $0.10 \text{ m x } 25 \text{ kN/m}^3 = 2.50 \text{ kN/m}^2$;

Revestimento superior (cerâmica + contrapiso) = 0,90 kN/m²;

Revestimento Inferior (argamassa) = 0.40 kN/m^2 .

• Cargas Acidentais (q):

Adotar como carga acidental para todas as lajes: $q = 150 \text{ kgf/m}^2$ ou $q = 1,50 \text{ kN/m}^2$.

• Carregamento total das lajes (qtot):

$$qtot = (2.5 + 0.90 + 0.40 + 1.50) \text{ kN/m}^2 = 5.3 \text{ kN/m}^2$$

2º Passo: Definição da estrutura analisada e concepção da planta baixa de acordo NBR 6492/1994, conforme Figura 1.

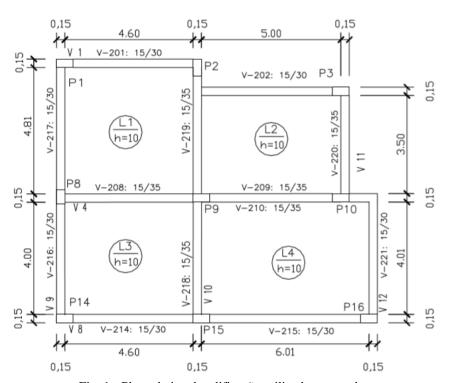


Fig. 1 - Planta baixa da edificação utilizada no estudo

3° Passo: Identificação em que caso estão situadas as lajes. Conforme Figura 2, observa-se que todas as quatro (4) lajes concentram-se no caso três (3), onde possuem engastamentos em duas (2) de suas direções. Lx e Ly referem-se respectivamente ao menor e maior vão da laje, sendo assim possível identificar que ambas as lajes são bidirecionais (armada em duas direções) atendendo a seguinte condição: [(λ =Ly/Lx) < 2].

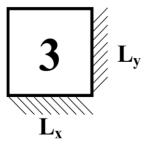


Fig. 2 - Engastamento da laje em duas direções (caso 3)

4° Passo: Cálculo dos momentos maximos positivos e negativos de acordo com os métodos de Marcus, Bares, Czerny (auxiliado pelo software Excel) e Analogia de Grelha (utilizando o software Eberick).

• Método de Marcus

Botelho (2010) concluí que Marcus é um método elástico misto, que disponibiliza valores satisfatórios para os momentos de lajes armadas em cruz, atuando nos estados limites de serviço - ELS. O método prevê seis casos de calculo, conforme os vínculos dos bordos da laje, apoio simples ou engaste. Para lajes no caso três (3) de acordo com a tabela de Marcus tem-se:

$$Mx = \frac{q \cdot lx^2}{mx}$$
 $My = \frac{q \cdot lx^2}{my}$ $Xx = -\frac{q \cdot lx^2}{nx}$ $Xy = -\frac{q \cdot lx^2}{ny}$

Mx: Momento positivo em x

My: Momento positivo em y

Xx: Momento negativo em x

Xy: Momento negativo em y

q: Carga total sobre a laje (qtot)

lx: Menor vão da laje

m e n: Varia de acordo com λ ($\lambda = Ly/Lx$)

Método de Bares

Para lajes no caso três (3) de acordo com a tabela de Bares tem-se:

$$Mx = \frac{\mu x. p. lx^2}{100}$$
 $My = \frac{\mu y. p. lx^2}{100}$ $Xx = \frac{\mu' x. p. lx^2}{100}$ $Xy = \frac{\mu' y. p. lx^2}{100}$

Mx: Momento positivo em x

My: Momento positivo em y

Xx: Momento negativo em x

Xy: Momento negativo em y

 μ e μ ': Varia de acordo com λ (λ =Ly/Lx)

p: Carga total sobre a laje (qtot)

lx: Menor vão da laje

• Método de Czerny

Para lajes no caso três (3) de acordo com a tabela de Czerny tem-se:

$$Mx = \frac{q \cdot lx^2}{mx}$$
 $My = \frac{q \cdot lx^2}{my}$ $Xx = \frac{q \cdot lx^2}{nx}$ $Xy = \frac{q \cdot lx^2}{ny}$

Mx: Momento positivo em x

My: Momento positivo em y

Xx: Momento negativo em x

Xy: Momento negativo em y

q: Carga total sobre a laje (qtot)

lx: Menor vão da laje

m e n: Varia de acordo com λ ($\lambda = Ly/Lx$)

• Método de Analogia de Grelha

A aplicação deste método se deu através da utilização do software Eberick, que segundo Hambly (1976) o processo é fundamentado na substituição das lajes por uma grelha equivalente, em que as barras da grelha representam os elementos estruturais do pavimento (vigas e lajes). Sendo assim possível reproduzir o comportamento estrutural das lajes obtendo os seus momentos maximos positivos e negativos.

RESULTADOS E DISCUSSÃO

Pelo quadro 1 nota-se que todos os valores de λ são menores que 2, atendendo ao criterio de [(λ =Ly/Lx) < 2] determinando que todas as lajes são bidirecionais (armada em duas direções).

Quadro 1 - Dados do projeto e determinação dos valores de $\boldsymbol{\lambda}$

CÁLCULO λ (λ=Ly/Lx)								
Lajes	Caso	Lx (m)	Ly (m)	2	q (kN/m²)			
L1	3	4,75	4,96	1,04	5,3			
L2	3	3,65	5,15	1,41	5,3			
L3	3	4,15	4,75	1,14	5,3			
L4	3	4,16	6,16	1,48	5,3			

Quadro 2 - Resultados dos esforços de momentos positivos e negativos calculados pelo método de Marcus

MÉTODO DE MARCUS								
Momentos Positivos (MP)				Momentos Negativos (MN)				
MP no eixo x		MP no eixo y		MN no eixo x		MN no eixo y		
mx	Mx	my	My	nx	Xx	ny	Xy	
34,42	3,47	37,22	3,21	14,84	-8,06	16,05	-7,45	
21,95	3,22	43,63	1,62	10,02	-7,05	19,93	-3,54	
29,27	3,12	38,04	2,40	12,74	-7,16	16,55	-5,52	
20,88	4,39	45,74	2,01	9,67	-9,48	21,17	-4,33	

Quadro 3 - Resultados dos esforços de momentos positivos e negativos calculados pelo método de Bares

MÉTODO DE BARES								
	Momentos Positivos (MP)				Momentos Negativos (MN)			
MP no eixo x		MP no	eixo y	MN no eixo x		MN no eixo y		
μх	Mx	μу	My	μ'x	Xx	μ'у	Xy	
2,94	3,52	2,68	3,20	7,43	-8,88	7,18	-8,59	
4,42	3,12	2,39	1,69	9,93	-7,01	7,94	-5,61	
3,42	3,12	2,65	2,42	8,28	-7,56	7,5	-6,85	
4,73	4,34	2,25	2,06	10,41	-9,55	8,06	-7,39	

Quadro 4 - Resultados dos esforços de momentos positivos e negativos calculados pelo método de Czerny

MÉTODO DE CZERNY								
Momentos Positivos (MP)				M	Iomentos Negativos (MN)			
MP no eixo x		MP no	MP no eixo y		MN no eixo x		MN no eixo y	
mx	Mx	my	My	nx	Xx	ny	Xy	
38	3,15	41	2,92	13,3	-8,99	13,8	-8,67	
24,1	2,93	51	1,38	10	-7,06	12,6	-5,60	
32,2	2,83	42,9	2,13	12	-7,61	13,3	-6,86	
22,2	4,13	53	1,73	9,6	-9,55	12,4	-7,40	

Visualiza-se nos quadros 2, 3 e 4 os resultados dos esforços de momentos positivos e negativos calculados pelos respectivos métodos simplificados de Marcus, Bares e Czerny. Percebe-se que esses dois últimos métodos apresentam maior aproximação de valores de momentos.

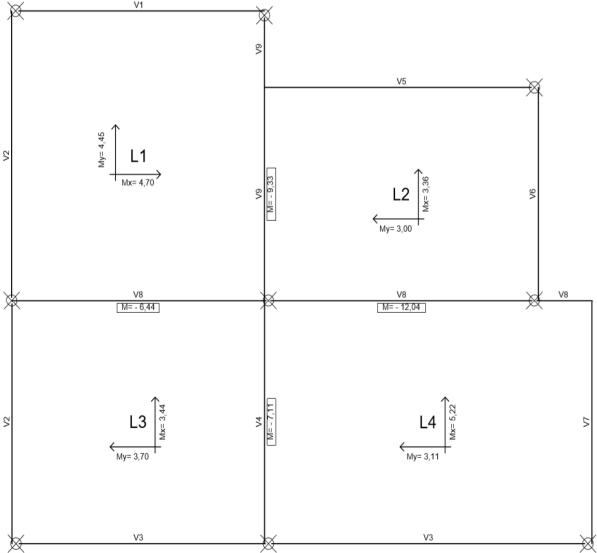


Fig. 3 - Resultados dos esforços de momentos positivos e negativos calculados pelo método de Analogia de Grelha

Comparando os quatro (4) métodos e classificando-os na escala dos que apresentaram maiores valores de momentos para os menores momentos percebe-se a seguinte classificação:

Analogia de Grelha > Czerny > Bares > Marcus

Assim sendo, Analogia de Grelha o método mais conservador apresentando valores de momentos mais elevados quando comparado com os demais métodos. Os elevados valores de momentos deve-se a não consideração dos vinculos existentes entre as faixas de uma mesma direção.

Após a análise constata-se que Marcus é o método menos conservador, isso é um dos motivos que o torna mais utilizado e na prática seu método proporciona um menor emprego de aço na estrutura, garantindo-lhe econômia, no entanto, não tem como foco principal a segurança da edificação.

CONSIDERAÇÕES FINAIS

O presente trabalho realizou uma análise em lajes maciças, elemento estrutural de bastnte complexidade. Utilizou-se tabelas para os métodos simplificados de Marcus, Bares e Czerny e o software Eberick para o método de Analogia de Grelha.

Os métodos simplificados supracitados consideram para níveis de cálculos que o processo de lajes isoladas atua com seus apoios muito rígidos considerando-lhes indeformáveis. Estes métodos supõem uma rigidez a torção correspondente a lajes maciças, logo, se aplicados em outros modelos de lajes apresentaram resultados diferentes.

No que se refere a Analogia de Grelha considera-se que as vigas de apoio atuam em conjunto com o modelo de grelha das lajes, logo, obtém-se configurações de deformações e esforços aproximados da situação real (regime elástico), estabelecendo relação entre a rigidez a torção e a flexão das barras, respeitando a capacidade de redistribuição dos esforços da laje.

Logo, percebe-se uma ligeira variação dos valores de momentos entre os métodos empregados, isso deve-se ao grau de consideração de fatores levados em conta no momento do cálculo. O quão criterioso e o método refletindo nos esforços, quantidade de materiais empregados

Observa-se a importância do estudo e entendimento do comportamento das lajes maciças sob a ótica de diversos métodos, buscando aprimorar e ter ciência da influência que cada um possui quando empregado. Diante disso, ideias sugestivas para trabalhos futuros é dar continuidade neste artigo realizando o dimensionamento das bitolas de aço e constatar o impacto quantitativo e financeiro aplicado a cada método.

REFERÊNCIAS

ACI Structural Jornal. American Concrete Institute. Ed.: ACI. N°02. Mar-Apr. Vol. 110. ISSN::0889-3241, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6120/2018. Cargas para o cálculo de estruturas de edificações. Rio de Janeiro, ABNT, 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6492/1994. Representação de projetos arquitetônicos. Rio de Janeiro, ABNT, 1994.

ARAÚJO, J. M. (2008) "Avaliação dos métodos simplificados para o cálculo de lajes maciças apoiadas em vigas flexíveis". Artigo científico. Escola de Engenharia da FURG. Rio grande.

BOTELHO, M. H. C.; MARCHETTI, O. Concreto armado eu te amo. São Paulo: ed. Edgard Blucher; 2010 e 2007, Vols 1 e 2.

HAMBLY, E. C. Bridge deck behaviour. London: Chapman and Hall, 1976.

JUSTO, R. A. (2010) "Comparação do Desempenho e de Funcionamento de Programas Comerciais (ANSYS e SAP2000) Focado à Análise Sísmica". Dissertação de Mestrado. Universidade de Nova Lisboa.