

ÓLEO ESSENCIAL DE Croton grewioides BAILL. (EUPHORBIACEAE): COMPOSIÇÃO QUÍMICA E ATIVIDADES ANTIBACTERIANA E ANTIOXIDANTE

Maíra Honorato de Moura Silva¹; Nathália Bandeira Carvalho dos Santos²; Laís Luana de Lima³ Antônio Fernando Morais Oliveira⁴.

¹Universidade Federal de Pernambuco, Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Laboratório de Ecologia Aplicada e Fitoquímica. (mairamhms@hotmail.com); ²Universidade Federal de Pernambuco, Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Laboratório de Ecologia Aplicada e Fitoquímica. (nathaliabandeiraa@gmail.com); ³Universidade Federal de Pernambuco, Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Laboratório de Fisiologia Vegetal (lais.luana@gmail.com); ⁴Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Ecologia Aplicada e Fitoquímica. (afmoliveira@gmail.com).

INTRODUÇÃO

Os óleos essenciais (OE's) são frações voláteis naturais que conferem os aromas percebidos em algumas espécies vegetais e têm dispertado um interesse considerável para utilização médica por todo mundo. Estão presentes em diversas partes das plantas, são de fácil extração, economicamente viáveis e em fução de sua complexa composição e seus efeitos farmacológicos, os tornam potenciais fontes para o desenvolvimento de novas drogas (SANTOS, 1997).

O crescente interesse por novos produtos naturais que possam agir como fármacos para os mais diversos fins terapêuticos faz da Caatinga (Floresta Tropical Sazonal Seca), um alvo das atividades de bioprospecção, visando também maior conhecimento sobre as bioatividades das espécies nativas e de conservação desse bioma.

A Caatinga é apontada como rica em espécies endêmicas e bastante heterogênea. Este ecossistema corresponde a um habitat tipicamente ocupado pelas Euphorbiaceae, e dentre os gêneros dessa família, destaca-se o *Croton* L. por ser o segundo maior e mais diverso, com cerca de 1.200 espécies. No Brasil, ocorrem 316 espécies e 6 variedades, sendo 252 endêmicas (CORDEIRO *et al.*, 2016), levando o país à categoria de mais diverso do gênero.

Com isso, busca-se conhecer a produção de óleo essencial de *Croton grewioides*, analisando o rendimento e composição química para obtenção de produtos naturais que possuam funções terapêuticas contra doenças causadas por microrganismos com resistência a fármacos sintéticos, bem como contra doenças que tenha efeitos oxidantes no organismo.

METODOLOGIA

Coleta e processamento do material vegetal

Folhas de *Croton grewioides* foram coletadas exclusivamente no perímetro da Caatinga (Vale do Catimbau, Buíque, PE) em novembro de 2015.

Extração dos óleos essenciais

O óleo essencial das folhas de *Croton grewioides* foi obtido por hidrodestilação com água destilada, utilizando aparelho tipo Clevenger, por um período de quatro horas (PEREIRA *et al.*,

(83) 3322.3222 contato@conidis.com.br www.conidis.com.br

2011). Em seguida, o óleo foi coletado e seco com sulfato de sódio anidro (Na₂SO₄) e mantido em refrigerador (-5 °C) num frasco de vidro âmbar até as análises químicas e ensaios biológicos.

O rendimento dos óleos essenciais foram definido como o quociente do peso do óleo recolhido e o peso seco do material vegetal extraído (SANTOS *et al.*, 2014) e os dados obtidos foram submetidos à análise estatística com teste de média (Teste de Tukey 5%).

Caracterização química

A identificação química dos compostos foram realizada por meio da técnica de cromatografia gasosa acoplada ao espectrômetro de massas (CG/EM), em um espectrômetro Shimadzu, operando com energia de ionização de 70 eV. O intervalo de massa será 30-500 Da e a temperatura da fonte iônica foi de 200°C. Foi utilizada coluna capilar de sílica fundida DB-5 (30 m \times 0.32 mm \times 1.0 μ m) e carreador de gás hélio com fluxo de 1 mL/min com split. A programação utilizada foi inicialmente 40°C por 5 minutos e depois aumentando 5°C/min até atingir 250°C, finalizando com esta temperatura por 5 minutos. As temperaturas do injetor e detector foram programadas de 250 °C e 200 °C, respectivamente. Um microlitro da amostra do óleo essencial, dissolvido em hexano (1:100, ν/ν), foi injetado (LIN et al., 2012).

Avaliação da Atividade Antimicrobiana

A concentração inibitória mínima das diferentes concentrações do óleo essencial diluídos em Tween 80 à 2% foi determinada pela técnica de microdiluição em caldo Mueller-Hinton (NCCLS, 1997; 2000). Os inóculos foram preparados nos mesmos meios, a densidade ajustada para o tubo 0,5 da escala McFarland (10⁸ para bactérias) e diluídas 1:10 para o procedimento de microdiluição. As microplacas foram incubadas a 37°C por 24 horas. O CIM foi realizado em duplicata e definido como a menor concentração do óleo essencial que não demonstra crescimento bacteriano visível.

Avaliação da atividade antioxidante

A atividade antioxidante dos óleos essenciais foram avaliada pelo método de monitoramento da habilidade em estabilizar o radical livre DPPH, que foi adaptado de acordo com os métodos descritos por Azevedo *et al.* (2013) e Simionatto *et al.* (2007).

Mil e duzentos microlitros (1200 μ L) de cinco diferentes diluições de etanol com os óleos essenciais (100, 75, 50, 25 e 10 mg/ml) foram misturados com 4,8 ml de solução DPPH (100 μ M) em solução etanólica. Após 30 minutos, sob abrigo de luz e a temperatura ambiente, foram realizadas leituras das absorbâncias em espectrofotômetro a 515 nm. As análises serão realizadas em triplicata.

A atividade antioxidante com DPPH foi expressa como EC₅₀ (a concentração de óleo necessária para reduzir 50% do DPPH, em mg/ml), no qual foi elaborada uma equação da reta a partir de regressão linear, onde a abscissa representa a concentração de óleo essencial testado e a ordenada o percentual médio de atividade antioxidante a partir das diferentes concentrações de óleo (AZEVEDO *et al.*, 2013).

RESULTADOS E DISCUSSÃO

* Rendimento do óleo

O óleo essencial de *C. grewioides* foi extraído de folhas secas por hidrodestilação e apresentou rendimento médio com teor de 3%. Valor este que é comparável com os já reportados previamente para outras espécies de *Croton* L. encontrados no Brasil com o mesmo método de extração (Tabela 1).

Tabela 1: Revisão bibliográfica dos rendimentos dos óleos essenciais de *Croton* spp.

Espécie	Rendimento	Parte da planta	Referência	
C. adamantinus	0,60%	ramos frescos	Ximenes et al., 2013	
C. argyrophyllus	0,76%	folhas frescas	Ramos et al., 2013	
C. blanchetianus	0,70%	Folhas frescas	Melo et al., 2013	
C. cajucara	0,65%	folha	Azevedo et al., 2013	
C. campestris	0,04%	folhas frescas	De Almeida et al., 2013	
C. campestris	0,02%	ramos	De Almeida et al., 2013	
C. cascarioides	0,10%	folhas secas	Dai et al., 2014	
C. chevalieri	0,12%	folhas secas	Dai et al., 2014	
C. cordiifolius	0,81%	folhas	Nogueira et al., 2015	
C. heliotropiifolius	0,20%	folhas secas	Dória et al., 2010	
C. pulegiodorus	5%	folhas secas	Dória et al., 2011	
C. pullei	0,50%	folhas	Peixoto et al., 2013	
C. pullei	0,06%	caule	Peixoto et al., 2014	
C. rhamnifolioides	0,80%	folhas secas	Santos et al., 2014	
C. sacaquinha	0,69%	folhas	Azevedo, 2010	
C. tonkinensis	0,16%	folhas secas	Dai et al., 2014	
C. urucurana	0,05%	casca do caule	Simionatto et al., 2007	
C. zehntneri	3,15%	Partes aéres secas	Camurça-Vasconcelos et al., 2007	
C. zehntneri	1,56%	Folhas	Costa et al., 2008	
C. zehntneri	2%	folhas frescas	Aguiar et al., 2014	
C. zehntneri	1,80%	Folhas e caules frescos	Andrade et al., 2014	

^{*} Perfil químico – Caracterização dos óleos

O perfil químico do óleo foi analisado em CG/EM e seus componentes foram identificados de forma quantitativa e qualitativa. Foram identificados 11 em *C. grewioides*. O que corrobora com o já descrito na literatura a respeito da grande diversidade química deste gênero. Sendo identificados como majoritários nesta espécie os sesquiterpenos hidrocarbonetos (Tabela 2).

Tabela 2: Compostos majoritários de óleo essencial de folha de *Croton grewioides*.

Peak	Compound	Retention time (min)	RI°	Relative area (%)
1	Linalgol	21.358	1099	0.79
2	β-caryophyllene	22.308	1419	3.19
3.	y-elemene	22.733	1436	1.77
4	NI	23.417		0.27
<u>4</u> 5	Germacrene D	24.325	1480	2.15
6	(+)-sativene	24.467	-	5.62
7.	NI	24.642		0.14
6 7 8	NI	24.792		0.93
9	y-cadinene	25.583	1513	1.20
10	NI	25.725		0.37
11	y-selinene	26.092	-	0.64
12	Elemol	26.425	1548	0.71
13	Germacrene B	26.733	1550	2.93
14	y-eudesmol	26.850	1631	2.18
15	NI	29.625		2.27
16	NI	30.535		7.66
17	2,3-dimethyl-1,3-heptadiene	32.422	-	67.18
	Total identified			88.36
	Monoterpene hydrocarbons			0.79
	Oxygenated monoterpenes			0.00
	Sesquiterpene hydrocarbons			17.50
	Oxygenated sesquiterpenes			2.89
	Others			67.18

^a Kovats retention index according to n-alkanes (C8–C26)

Na análise quantitativa de DPPH, antioxidantes são tipicamente caracterizados pelo seu valor do EC₅₀. *C. grewioides* apresentou valor de EC₅₀= 3,09 mg/ml.

C. grewioides apresentou valor de EC_{50} que corrobora com os encontrados em outras espécies de Croton L. na literatura, indicando possuir uma boa atividade antioxidante.

Segundo Simionatto *et al.* (2007), o óleo essencial bruto obtido a partir das cascas do caule de *C. urucurana* apresentou EC₅₀ de 3,21mg/ml, já a fração obtida com atividade antioxidante do óleo essencial, apresentou EC₅₀ de 1,05mg/ml. O que foi considerado como uma boa atividade antioxidante comparada ao BHT, que apresenta EC₅₀ de 0,18mg/ml. Já Azevedo *et al.* (2013) sugerem que o 7-hydroxycalamenene presente no óleo essencial de *C. cajucara* proporciona uma atividade antioxidante mais de acordo com EC50 inferior a 63,59 μg/mL. Azevedo *et al.* (2013) testaram a atividade antioxidante de *C. cajucara* e atribuiu sua promissora atividade aos compostos 7-hydroxycalamenene e ao β-caryophyllene, uma vez que as amostras dos indivíduos da sacaca vermelha apresentaram EC50 de SV001—45.23 μg/mL, SV003—63.59 μg/mL, SV004—54.06 μg/mL, SV005—44.4 μg/mL. Já Morais *et al.* (2006), analisando a atividade antioxidante por TBARS de três espécies de *Croton* L. do Nordeste brasileiro, verificaram que os óleos essenciais do *C. zenhtneri* e *C. argyrophylloides* mostraram maior ação antioxidante que o *C. nepetaefolius*.

* Atividade antimicrobiana

A atividade antimicrobiana do óleo essencial foi testada pelo método de microdiluição seriada contra oito bactérias, sendo cinco gram-negativas: *Escherichia coli, Klebsiella pneumonie, Proteus mirabilis, Pseudomonas aeroginosa* e *Salmonella Enteridis* e três espécies gram-positiva: *Staphylococcus saprophyticus, Staphylococcus aureus* e *Bacillus subtilis*.

O resultado presente na tabela 3 revela que o óleo essencial bruto de C. grewioides foi mais eficaz sobre as bactérias gram-positivas, sendo capaz de inibir três das oito bactérias, a Bacillus subtilis (2.34 μ l/mL), Staphylucoccus aureus (18,75 μ l/mL) e S. Staphylucoccus S0 S1,00 S1,00 S2,00 S3,00 S4,00 S5,00 S5,00 S5,00 S5,00 S6,00 S7,00 S7,00 S7,00 S8,00 S9,00 S9

^{*} Atividade antioxidante

Tabela 3: Atividade antimicrobiana de óleo essencial de folha de *C. grewioides* (Concentração Inibitória Mínima – MIC; Concentração Bactericida Mínima - CMB em μl/mL).

Microrganismos	Croton grewioides		
	MIC	CMB	
Escherichia coli	>100	>100	
Bacillus subtillis	2.34	31.25	
Klebsiella pneumonie	>100	>100	
Proteus mirabilis	>100	>100	
Pseudomonas aeroginosa	>100	>100	
Salmonella Enteriditis	>100	>100	
Staphylococcus aureus	18.75	100	
Staphylococcus saprophyticus	12.5	50	

O óleo essencial de *Croton grewioides* testado foi eficiente quanto à inibição do crescimento bacteriano, principalmente, de *B. subtilis*. Embora esta bactéria não seja um patógeno humano, e sim uma saprófita, mas já foi amplamente utilizada em tratamentos antes do desenvolvimento dos antibióticos e continua servindo como organismo modelo para estudos laboratoriais (ARAUJO, 2016).

Quanto à atividade bactericida desse óleo, pode-se notar a eficiência destes principalmente sobre *B. subtilis*. O que indica a susceptibilidade deste microrganismo ao óleo essencial de *Croton grewioides* comparada às outras bactérias testadas.

O que corrobora com o analisado por Lin *et al* (2012) com óleo essencial de partes aéreas e raízes de *Euphorbia macrorrhiza* (Euphorbiaceae), que também teve efeito inibitório sobre Staphyloccocus aureus, com MIC = 2.8 µg/mL, enquanto não apresentou efeito sobre $E.\ coli$.

Como também o analisado por Costa *et al.* (2013) com óleo essencial de *C. rhamnifoliodes* que apresentou atividade antibacteriana contra *Staphylococcus aureus*, como também contra *Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes* e *Salmonella enteritidis* com valores de concentração inibitória mínima (CIM) e concentração bactericida mínima (CBM) entre $2,5-20~\mu\text{L/mL}$ e $5-40~\mu\text{L/mL}$, respectivamente, próximo aos intervalos de valores encontrados no presente estudo.

Já a análise feita por Simionato *et al.* (2007) com óleo essencial bruto de *C. urucurana* não corrobora com os efeitos antibacterianos dos óleos essenciais de *C. grewioides*, pois *E. coli* e *S. epidermalis* (MIC= 1,25 mg/mL) se mostraram sensíveis, enquanto que *B. subtilis* e *C. albicans* foram os microrganismos mais resistentes (MIC= 10 mg/mL).

CONCLUSÕES

Pode-se perceber o excelente rendimento (3%) de óleo essencial bruto obtido das folhas de *Croton grewioides*.

Foi possível concluir que o óleo essencial bruto de *C. grewioides* apresenta uma alta diversidade química de compostos que pertence basicamente a classe dos sesquiterpenos hidrocarbonetos.

Esta espécie apresentou atividade antioxidante, apresentando um significativo valor de $EC_{50}=3,09$ mg/ml, semelhantes aos já reportados na literatura pra espécies deste gênero.

Foi possível identificar que *Bacillus subtilis* foi a bactéria mais sensível ao óleo essencial de *C. grewioides*. Demonstrando-se importante também quanto à inibição e atividade bactericida sobre

Staphylococcus aureus, um importante patógeno humano que causa infecções e apresenta resistência a antimicrobianos.

REFERÊNCIAS BIBLIOGRÁFICAS

- ARAUJO, M. *Bacillus subtilis*. Disponível em: http://www.infoescola.com/reino-monera/bacillus-subtilis/ > Acesso em: 25/01/2016
- AZEVEDO, MARIANA M. B.; CHAVES, FRANCISCO C. M..; ALMEIDA, CATIA; BIZZO, HUMBERTO; DUARTE, RAFAEL S.; CAMPOS-TAKAKI, GALBA; ALVIANO, CELUTA S.; ALVIANO, DANIELA S. Antioxidant and Antimicrobial Activities of 7-Hydroxycalamenene-Rich Essential Oils from *Croton cajucara* Benth. **Molecules**, 18, 1128-1137; doi:10.3390/molecules18011128, 2013.
- CORDEIRO, I., SECCO, R.,CARDIEL, J.M.,STEINMANN, V.,CARUZO, M.B.R.,RIINA, R.,LIMA, L.R. DE,MAYA-L., C.A.,BERRY, P.,CARNEIRO-TORRES, D.S.,O.L.M. SILVA,SALES, M.F.D.,SILVA, M.J.DA,SODRÉ, R.C.,MARTINS, M.L.L.,PSCHEIDT, A.C.,ATHIÊ-SOUZA, S.M.,MELO, A.L.D.,OLIVEIRA, L.S.D.,PAULA-SOUZA, J., SILVA, R.A.P. 2016. Euphorbiaceae in lista de espécies da flora do brasil. Jardim botânico do rio de janeiro. Disponivel em: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/fb113. acesso em: 18 Jan. 2016
- Costa, A. C. V.; Melo, G. F. do A.; Madruga, M. S.; Costa, J. G. M.; Garino Junior, F.; Queiroga Neto, V. Chemical composition and antibacterial activity of essential oil of a *Croton rhamnifolioides* leaves Pax & Hoffm. **Semina: Ciências Agrárias**, Londrina, v. 34, n. 6, p. 2853-2864, nov./dez. 2013.
- LIN, J.; DOU, J.; XU, J.; AISA, H. A. Chemical Composition, Antimicrobial and Antitumor Activities of the Essential Oils and Crude Extracts of *Euphorbia macrorrhiza*. **Molecules**, *17*, 5030-5039; doi:10.3390/molecules17055030, 2012.
- MORAIS, S. M.; CATUNDA JÚNIOR, F. E. A.; SILVA, A. R. A.; MARTINS NETO, J. S. Atividade antioxidante de óleos essenciais de espécies de *Croton* do Nordeste do Brasil. **Quim. Nova**, Vol. 29, No. 5, 907-910, 2006
- PEREIRA, A.Q.; CHAVES, F.C.M.; PINTO, S.C.; LEITÃO, S.G.; BIZZO, H.R. Isolation and Identification of cis-7-Hydroxycalamenene from the Essential Oil of *Croton cajucara* Benth. **J. Essent. Oil Res,** *2*3, 20–23, 2011.
- SANTOS, F. A. Atividade antibacteriana, antinoceptiva e anticonvulsivante dos óleos essenciais *Psidium guyanenses* PERS. e *Psidium pohlianum* BERG. Dissertação de mestrado, UFC, Fortaleza, 1997.
- SANTOS, G. K. N.; DUTRA, K. A.; LIRA, C. S.; LIMA, B. N.; NAPOLEÃO, T. H.; PAIVA, P. M. G.; MARANHÃO, C. A.; BRANDÃO, S. S. F.; NAVARRO, D. M. A. F. Effects of *Croton rhamnifolioides* Essential Oil on *Aedes aegypti* Oviposition, Larval Toxicity and Trypsin Activity. **Molecules**, *19*, 16573-16587; doi:10.3390/molecules191016573, 2014.
- SIMIONATTO *ET AL*. Chemical composition and evaluation of antibacterial and antioxidant activities of the essencial oil of *Croton urucurana* Baillon (Euphorbiaceae) stem bark. **J. Braz. Chem. Soc.** Vol.18, N. 5, 879-885, 2007.