

SOLUÇÃO EXATA DA EQUAÇÃO DE UM SISTEMA DE BOMBEIO MECÂNICO

Alínia Rodrigues dos Santos; Pedro Tupã Pandava Aum; Anderson de Jesus Araújo Ramos

Universidade Federal do Pará. E-mails: santosalinia@gmail.com; pedroaum@gmail.com; ramos@ufpa.br

Resumo: No estudo deste trabalho visamos analisar um modelo matemático que simula o comportamento dinâmico de um método de elevação artificial muito utilizado na indústria de petróleo, este método é conhecido como Bombeio Mecânico. O estudo do comportamento deste sistema é feito a partir de uma análise mais detalhada da coluna de hastes utilizando um modelo representado por uma equação diferencial parcial hiperbólica com damping friccional. Foi utilizado o método matemático da separação de variáveis que consiste em um método puramente quantitativo para obtenção da solução exata do problema e consequentemente, após esta análise, observamos que no movimento das hastes podem ocorrer três tipos de amortecimento importantes para a interpretação de projetos: o oscilatório amortecido, o amortecimento crítico e o superamortecido. Por fim, foram feitas simulações para mostrar o comportamento da solução deste método de elevação artificial.

Palavras-chave: Simulações numéricas, Bombeio mecânico, Amortecimento.

Introdução

Observa-se que na indústria de petróleo os métodos de elevação artificial são de suma importância para a produção de petróleo. Inicialmente, na vida produtiva do poço, o fluxo de fluido do reservatório até a superfície ocorre por meio de surgência, ou seja, a pressão do reservatório é suficiente para elevar o fluido até a superfície. Porém, com o passar do tempo, a retirada de fluido do meio poroso do reservatório faz com que o diferencial de pressão do reservatório e do poço não seja suficiente para elevação do fluido, então é necessário fazer-se uso de mecanismos de elevação com o intuito de fornecer energia para ocasionar um diferencial de pressão no fundo do poço, e consequentemente, aumentando a extração dos fluidos do reservatório até a superfície. Existem dois métodos de elevação utilizados: o natural e o artificial.

A elevação natural ocorre na vida produtiva do poço, onde o diferencial de pressão no fundo é suficiente para permitir um fluxo livre dos fluidos até a superfície. Porém, com o passar do tempo da vida produtiva do poço a pressão do reservatório diminui, consequentemente, a vazão também diminui, então se faz necessário a utilização de métodos de elevação artificial para fornecer um diferencial de pressão no fundo do poço capaz de aumentar a vazão. Existem vários métodos de elevação artificial, dentre eles: Gás-lift, Bombeio por Cavidades

Progressivas, Bombeio Centrífugo Submerso, Pluger-lift e Bombeio Mecânico. Os métodos devem se adequar ao tipo de trabalho que ele vai exercer, e isto dependerá de vários fatores que envolvem que tipo de fluidos são produzidos no poço, a profundidade do poço, sua geometria, os custos, dentre outros. Neste trabalho damos enfoque ao método de elevação artificial por bombeio mecânico.

O bombeio mecânico é utilizado em poços terrestres que possuem baixa e média vazão, e também em poços de grandes profundidades. Seu trabalho baseia-se na transferência de energia para o fundo do poço através do movimento rotativo de um motor onde essa energia é transmitida por meio da coluna de hastes acionando a bomba de fundo fazendo com que o fluido produzido seja elevado do reservatório até a superfície. O sistema é representado de acordo com a Figura 1.

Este método de elevação artificial é um mecanismo que contém componentes de superfície e de fundo. Os componentes de superfície são: o motor, a unidade de bombeio, e a

(83) 3322.3222

contato@conepetro.com.br

www.conepetro.com.br

haste polida. Já os componentes de fundo são: a coluna de hastes e a bomba de fundo. Dentre estes componentes, a coluna de hastes conecta todos os equipamentos de superfície com os equipamentos de fundo sendo esta coluna de hastes o ponto mais crítico do sistema. Segundo Thomas (2001), esta trabalha em ambientes que podem ser corrosivos ou abrasivos e que apresentam variação de esforços onde no curso ascendente da coluna de hastes esta sustenta o peso do fluido e no curso descendente o peso é sustentado pela coluna de produção. A haste polida é a seção da coluna que está submetida a maiores esforços, onde está sujeita tanto a força do peso das hastes quanto a força de atrito com o fluido e a coluna de produção.

Muitos trabalhos propuseram apresentar como ocorre o comportamento dinâmico desta elevação artificial por bombeio mecânico. Um dos primeiros trabalhos a realizar a modelagem desse sistema foi iniciado por Gibbs (1963) que desenvolveu um modelo matemático baseado na equação da onda amortecida

$$\frac{\partial^2 u(x,t)}{\partial t^2} = a^2 \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\pi a v}{2L} \frac{\partial u(x,t)}{\partial t}$$

capaz de descrever o comportamento dinâmico da haste, onde *a* é a velocidade do som ao longo da haste e $\frac{\pi av}{2L}$ representa o efeito do amortecimento da vibração presente na coluna de hastes. Esta equação é descrita com a análise das forças que são atuantes na coluna de haste no movimento ascendente como: a força do peso, do atrito, da tração e a força da gravidade. Todavia, os efeitos gravitacionais não são considerados para simplificar o modelo matemático. O fator de amortecimento presente na equação retrata as perdas de energia durante o funcionamento da unidade de bombeio mecânico. A energia é consumida pela ação do atrito viscoso e do atrito Coulombiano presente entre a haste e o fluido e também pelo atrito com a camisa da bomba.

É interessante modelar o sistema de bombeio mecânico para obter-se uma estimativa do comportamento do sistema com intuito de adquirir parâmetros em projetos e otimização de instalações do mecanismo. Portanto, a modelagem dinâmica do mecanismo torna mais eficiente a obtenção dos parâmetros com a utilização de uma equação diferencial parcial e definição de importantes variáveis executando a simulação do comportamento da coluna de hastes. O interessante de se analisar esta coluna é devido ao seu comportamento elástico, e os esforços gerados tanto na superfície quanto no fundo são transmitidos através desta na velocidade do som e a presença de alterações nesses esforços podem alterar o funcionamento do sistema de bombeio.

O objetivo principal deste trabalho é apresentar a solução analítica do sistema que modela o bombeio mecânico com hastes e verificar como ocorre o comportamento desta solução para diferentes valores do coeficiente de amortecimentos através de simulações computacionais.

1. Metodologia

1.1 Método da separação de variáveis

A equação diferencial parcial obtida através da análise das forças atuantes em um elemento da coluna de hastes é uma equação hiperbólica onde as condições de contorno especificam as condições na superfície e no fundo e as condições iniciais representam o sistema em repouso. Assim, temos o seguinte modelo matemático

$$\phi_{tt} - a^2 \phi_{xx} + \gamma \phi_t = 0, \quad (0, L) \times (0, T)$$
⁽¹⁾

$$\phi(0,t) = \phi(L,t) = 0, \quad t > 0 \tag{2}$$

$$\phi(x,0) = f(x), \quad \phi_t(x,0) = g(x), \quad 0 \le x \le L,$$
(3)

onde $\phi = \phi(x, t)$ é o deslocamento de um ponto x da coluna de hastes no instante t, a representa a velocidade do som na haste e γ é o fator de amortecimento expresso por

$$\gamma = \frac{\pi a \nu}{2L},$$

sendo ν o coeficiente adimensional de amortecimento e *L* o comprimento da haste.

O método matemático usado para resolução do problema (1) - (3) é conhecido como método da separação de variáveis. Este método consiste em considerarmos o *ansatz* da forma $\phi(x,t) = F(x)G(t)$ e consequentemente, a solução da equação diferencial parcial implicará na resolução de duas equações diferenciais ordinárias denominadas: problema de valor inicial e problema de valor de contorno. A solução destes dois problemas são fundamentais para obtenção da solução do problema (1) - (3). Na seção seguinte, fornecemos os detalhes desta resolução.

2. Resultados e Discussão

2.1 Solução exata

Aqui mostramos a solução exata do problema (1) - (3) utilizando o método de separação de variáveis em Séries de Fourier e fazemos algumas simulações computacionais que comprovam os nossos resultados. Para o bom entendimento deste método, expomos o resultado em forma de proposição e detalhamos minunciosamente a sua demonstração.

Proposição 1 (Solução Exata). *A solução exata do problema (1)-(3) é dada pelo desenvolvimento da Série de Fourier*

$$\phi(x,t) = e^{-\frac{\pi a \nu}{2L}t} \sum_{k=0}^{\infty} \left[a_k \cos\left(\frac{\pi a \nu}{4L}\Theta_k(\nu)t\right) + b_k \sin\left(\frac{\pi a \nu}{4L}\Theta_k(\nu)t\right) \right] \sin\left(\frac{k\pi x}{L}\right), \ com \ k \in \mathbb{N},$$

onde a_k , b_k são os coeficientes de Fourier e $\Theta_k(v) \coloneqq \sqrt{1 - 16k^2/v^2}$.

Prova: Usando o método da separação de variáveis, consideramos o ansatz da forma

$$\phi(x,t) = F(x)G(t) \tag{4}$$

e substituímos na equação (1) para obtermos

$$F(x)G''(t) - a^2 F''(x)G(t) + \gamma F(x)G(t) = 0.$$
(5)

Resulta daí que

$$a^{2}\frac{F''(x)}{F(x)} = \frac{G''(t) + \gamma G'(t)}{G(t)}.$$
(6)

Observamos que o lado esquerdo da equação (6) depende apenas de x e o lado direito depende apenas t. Isto somente é possível se,

$$a^{2}\frac{F''(x)}{F(x)} = \frac{G''(t) + \gamma G'(t)}{G(t)} = -\lambda,$$
(7)

Segue da equação (7) e do sistema (1) - (3), o problema de valor inicial

$$\begin{cases} G''(t) + \gamma G'(t) + \lambda G(t) = 0, \ \forall t \ge 0 \\ G(0) = 1, \ G'(0) = 1. \end{cases}$$
(8)

e o problema de valor de contorno

$$\begin{cases} a^2 F''(x) + \lambda F(x) = 0, \ 0 \le x \le L \\ F(0) = F(L) = 0. \end{cases}$$
(9)

Considerando as condições de contorno homogêneas F(0) = F(L) = 0, temos que F(x) é dada pelas autofunções

$$F(x) = \sin(k\pi x/L) \tag{11}$$

e o parâmetro λ é dado por $\lambda_k \coloneqq -a^2 k^2 \pi^2 / L^2$. Por outro lado, a solução do problema de valor inicial é obtida resolvendo a equação característica

contato@conepetro.com.br

(83) 3322.3222

www.conepetro.com.br

$$z^2 + \gamma z + \lambda_k = 0 \tag{11}$$

Isto nos dá,

$$z_{1,2}(\nu) \coloneqq z_{1,2} = -\gamma(\nu) \pm \sqrt{|\gamma(\nu)|^2 - 4\lambda_k},$$

onde $\gamma(\nu) = \pi a \nu / 4L$. Consequentemente, a solução é dada por

$$G(t) = e^{-\frac{\pi a \nu}{4L}t} \left[a_k \cos\left(\frac{\pi a \nu}{4L}\Theta_k(\nu)t\right) + b_k \sin\left(\frac{\pi a \nu}{4L}\Theta_k(\nu)t\right) \right], \quad com \ \Theta_k(\nu) \coloneqq \sqrt{16k^2/\nu^2 - 1}.$$

Para concluirmos a prova, usamos o princípio da superposição de soluções. Com isto, obtemos

$$\phi(x,t) = e^{-\frac{\pi a\nu}{2L}t} \sum_{k=0}^{\infty} \left[a_k \cos\left(\frac{\pi a\nu}{4L}\Theta_k(\nu)t\right) + b_k \sin\left(\frac{\pi a\nu}{4L}\Theta_k(\nu)t\right) \right] \sin\left(\frac{k\pi x}{L}\right), \ com \ k \in \mathbb{N},$$
$$com \ \Theta_k(\nu) \coloneqq \sqrt{16k^2/\nu^2 - 1}.$$

<u>Observação</u>: O parâmetro de amortecimento v > 0 desempenha um papel fundamental na resposta qualitativa da solução $\phi(x, t)$, pois dependendo do valor de v, os tipos de amortecimento serão: oscilatório amortecido (v < 4k), amortecimento crítico (v = 4k) e superamortecido (v > 4k). A partir destes resultados analisamos como ocorre estes comportamentos da solução através de simulações computacionais.

2.2 Simulação computacional

Nesta seção apresentamos alguns resultados de simulações feitas a partir da solução exata do problema (1)-(3). Para isto, adotamos os seguintes dados: L = 1, a = 1,2 e k = 5.

Figura 2 – Solução exata do problema (1)-(3). Nesta simulação, usamos $\nu \in \{4, 20, 60\}$ respectivamente, para obtermos os três casos distintos. Fonte: O autor.

No caso clássico do movimento harmônico oscilatório amortecido ($\nu = 4 < 20$), as oscilações estão presentes na solução mas as suas amplitudes são rapidamente amortecidas para zero ao

longo do tempo. Por outro lado, no amortecimento crítico ($\nu = 20$) o decaimento da solução para zero é suficientemente rápido, a ponto de não possuir oscilações. Já no caso de superamortecimento ($\nu = 60 > 20$), não há oscilações ao longo do tempo, no entanto, ela não decai para zero.

Conclusões

Neste trabalho foi possível observarmos pontos importantes na modelagem da coluna de hastes do sistema de bombeio mecânico. A partir destes resultados é possível estudar qual tipo de material que compõe a coluna de hastes possui uma forte influência sobre a propagação dos esforços transmitidos através dela. Isto ficou evidente ao encontrarmos a solução exata do modelo e fazermos as simulações computacionais para diferentes valores do coeficiente de amortecimento. Com isto, constamos que o sistema pode se comportar de três formas qualitativamente diferentes: oscilatório amortecido, amortecimento crítico e superamortecido. Conhecer esses comportamento são de suma importância na área de métodos de elevação artificial na indústria de petróleo, pois o rendimento do sistema dependerá do tipo de material empregado na fabricação da coluna de bombeio mecânico e o tipo de material está diretamente ligado ao valor do coeficiente de amortecimento.

Referências

GIBBS, S. **Predicting the behavior of sucker-rod pumping systems**. Journal of Petroleum Technology, 1963.

NASCIMENTO, J. **Simulador Computacional para Poços de Petróleo com Método de Elevação Artificial por Bombeio Mecânico**. 2002. 114 f. Dissertação (Mestrado em Automação e Sistemas) – Universidade Federal do Rio Grande do Norte – UFRN, Natal, 2005.

THOMAS, J. Fundamentos da Engenharia de Petróleo. Interciência, Rio de Janeiro, 2001.