III Workshop de Engenharia de Petróleo

PETROFÍSICA DE ROCHAS CARBONÁTICAS DA FORMAÇÃO COTINGUIBA, BACIA DE SERGIPE-ALAGOAS.

Wellington Martins Bezerra da Silva¹, José Agnelo Soares², Louis Dostoievsky Gomes Tabosa³, Isis da Silva Rodrigues⁴ (Autores: Fonte Arial 12, centralizado, apenas iniciais maiúsculas, regular)

¹ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia Mecânica – wellington1991@hotmail.com

² Universidade Federal de Campina Grande, Unidade Acadêmica de Mineração e Geologia agnelosoaresl@gmail.com

³ Universidade Federal de Campina Grande, Unidade Acadêmica de Mineração e Geologia – louis.tabosa@me.com

⁴ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia Mecânica – isis_rodrigues_pb@hotmail.com

RESUMO

Este trabalho apresenta os resultados obtidos em ensaios petrofísicos realizados em 15 amostras de rocha carbonáticas extraídas da Formação Cotinguiba, Bacia de Sergipe-Alagoas. As propriedades analisadas são a porosidade, densidade de grãos, densidade total, velocidade e módulos elásticos. Os valores obtidos de densidade de grãos indicam que as amostras analizadas são calcários não puros, provavelmente com participação de componentes clásticos e/ou matéria orgânica. A porosidade situa-se no intervalo de 20 a 34%, valores compatíveis com um reservatório em potencial. As velocidades elásticas apresentam, em geral, uma boa correlação inversa com a porosidade e uma baixa anisotropia, limitada a 1,5%. Os módulos elásticos apresentam uma constante de redução de valores com o aumento da porosidade.

Palavras-chave: Propriedades Petrofísicas, Formação Cotinguiba, Carbonatos.

1. INTRODUÇÃO

As rochas carbonáticas têm ganhado grande destaque no cenário geológico internacional. Isto se deve ao fato de que nestas rochas se encontram pelo menos 40% das reservas mundiais conhecidas de hidrocarbonetos (Tucker, 1990). Devido a essa grande importância diversos estudos têm sido realizados com as rochas carbonáticas.

Dentro deste contexto, a análise petrofísica aparece como uma ferramenta de fundamental importância na exploração mineral moderna. principalmente na exploração petrolífera. A Petrofísica interessa-se particularmente pelas propriedades que permitem determinar a porosidade, permeabilidade e saturação de fluidos em uma rochareservatório, de modo que a partir destas, se possa caracterizar o armazenamento e a passagem de fluidos na rocha, com o objetivo de poder gerenciar e também prever a performance de um reservatório (Soares, 2011).

Neste trabalho, são analisadas as propriedades petrofísicas de 15 amostras de rochas carbonáticas da Formação Cotinguiba, localizada na Bacia Sergipe-Alagoas.

1.1. Geologia Regional da Bacia Sergipe-Alagoas

A Bacia de Sergipe-Alagoas (SE-AL) está localizada na margem equatorial do nordeste brasileiro, entre os paralelos 9° e 11°30'S. Na porção *onshore* apresenta

uma área de 13.000 km², enquanto que a parte offshore se estende por uma área de 32.760 km², até a cota batimétrica de 3.000 metros. A Bacia limita-se, a norte, com a Bacia de Pernambuco/Paraíba, pelo Alto de Maragogi; a sul, o limite da emersa é constituído porcão pela Plataforma de Estância e, offshore, pela Bacia de Jacuípe, através do sistema de falhas do Vaza-Barris (Aquino et al, 1990). A Bacia é dividida em 2 Sub-bacias: Subbacia de Sergipe e Sub-bacia de Alagoas separadas pelo Alto de Japoatã-Penedo.

Figura 1: Mapa de Localização da Bacia de Sergipe-Alagoas

A Formação Cotinguiba ocorre desde o flanco sudeste do Alto de Penedo até a Foz do Rio Real, tendendo a desaparecer ao longo da costa (Bandeira Jr., 1978). Aflora apenas em Sergipe e suas exposições estendem-se desde Japaratuba ao norte até o Rio Real, ao sul, com exposições de 5 a 10 km de largura (Schaller, 1969). Constitui-se de carbonatos com interestratificações clásticas e é dividida nos Membros Sapucari e Aracaju (Schaller, 1969).

As amostras de rochas carbonáticas analisadas neste trabalho foram coletadas em um afloramento da Pedreira Sá, a qual está localizada no município de Santo Amaro das Brotas, em Sergipe.

2. METODOLOGIA

2.1. Preparação das amostras

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

Para a realização dos ensaios no Laboratório de Petrofísica da UFCG, as amostras de rochas necessitam de uma preparação prévia, de modo que sejam retirados plugues delas e que eles fiquem com forma cilíndrica e com dimensões de 1,5 polegadas de diâmetro e com altura aproximada de duas polegadas.

A preparação consiste na serragem das amostras de mão enviadas pela Universidade Federal de Sergipe, extração de plugues em plugadeira de bancada, retirifação das extremidades dos plugues, de modo a garantir faces planas e perfeitamente paralelas. A figura 2 mostra os equipamentos utilizados na preparação dos plugues.

Figura 2: (a) Serra, (b) Plugadeira manual e (c) Retificadora.

Terminada esta fase, os plugues foram colocados em uma estufa onde foram submetidos à secagem por 24 horas à uma temperatura constante de 80°C. Após a secagem, os plugues foram retirados da estufa e então foram medidas as suas dimensões com o paquímetro digital e os mesmos são pesados em balança de precisão semi-analítica.

2.2. Ensaios de porosidade e densidade de grãos

A fase de análise laborais tem início com a medição da porosidade e da densidade de grãos em permoporosímetro a gás.

O equipamento utilizado é o UltraPoroPerm 500, fabricado pela Corelab, o qual se utiliza do método da porosimetria por expansão gasosa. Ao utilizar um copo matriz foi possível medir o volume de grãos de cada plugue. A diferença entre o volume de grãos e o volume total do plugue consiste o seu volume de vazios. Para encontrar a porosidade bastar determinar a razão entre o volume de vazios e o volume total. A Figura 3 apresenta os equipamentos utilizados na medição da porosidade e da densidade de grãos e total.

É possível medir o volume de grãos pela expansão do nitrogênio contido em uma câmara no interior do porosímetro. Nesta câmara, de volume conhecido V₁, é medida a pressão P1 na qual o gás encontra-se comprimido. Em seguida, permite-se que o gás se expanda através de uma conexão ao copo matriz, de volume V₂, também conhecido, o qual contém o plugue. Após a estabilização da expansão do gás, mede-se a pressão P2. A queda de pressão dada pela diferença P₁-P₂ é proporcional ao volume V ocupado pelo gás: $V = V_1 + V_2 - V_G$, em que V_G é o volume de grãos do plugue. Aplicando a Lei de Boyle e considerando que V_G é a única incógnita, este parâmetro pode ser determinado de forma direta.

2.3. Ensaios elastodinâmicos

Para medir as velocidades elásticas foi utilizado o sistema AutoLab 500®, marca New England Research, que permite registrar simultaneamente três formas de onda: a onda P, que se propaga e possui polarização na direção axial do plugue, e duas ondas S com direções de polarização mutuamente

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

ortogonais e perpendiculares ao eixo do plugue: S_1 e S_2 . A medição das propriedades elásticas não precisa ser realizada, necessariamente, em amostras secas, porém a medição sob essas condições permite modelar as velocidades das amostras saturadas.

Os ensaios foram realizados em 15 amostras secas, com pressão de poros e temperatura nas condições normais do ambiente. A pressão confinante inicial estabelecida foi de 40 MPa. A amostra fica sob esta pressão por no mínimo 5 minutos, quando se captura a primeira onda, sendo que o tempo para esta estabilização depende do tipo de amostra. Após a primeira onda ser capturada, as demais com as pressões confinantes de 35, 30, 25, 20, 15, 10, 5 MPa, são capturadas sequencialmente.

Se faz necessário fornecer informações durante 0 ensaio de velocidade de ondas como, dados de comprimento (mm), diâmetro (mm). densidade total (g/cm³) e porosidade (%). A amostra é inserida em uma camisa de borracha e presa a dois transdutores (fonte e receptor). A fonte gera pulsos que atravessam a amostra e são registradas pelo receptor, que transformam esses pulsos em sinal elétrico e os envia a um osciloscópio, onde é mostrado na tela do mesmo.

Após o ensaio é realizada a picagem das ondas, que é a marcação do tempo de chegada de cada uma destas ondas (Vp, Vs₁ e Vs₂).

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

Figura 4: Sistema AutoLab500®.

A partir das velocidades de propagação das ondas P e S e da densidade total dos plugues, foram calculados os módulos elásticos: módulo de elasticidade (E), incompressibilidade (K), módulo de cisalhamento (G) e Razão de Poisson ().

3. RESULTADOS E DISCUSSÃO

A figura 5 apresenta os valores de densidade de grãos medidos nas amostras analisadas. Nesta figura observa-se, que as densidades de grãos estão relativamente baixas, logo, vê-se que as amostras não são calcários puros, uma vez que para serem calcários puros deveriam amostras possuir as а densidade de grãos em torno de 2,7 g/cm³ e como observa-se na figura, nenhuma amostra possui densidade de grãos de $2,7 \text{ g/cm}^3$.

amostras analisadas.

A figura 6 apresenta a relação entre a porosidade e a densidade total (matriz mais fluido contido nos poros). Observase nesta figura, que quanto maior o valor da porosidade, menor será o valor da densidade total, nota-se também que as amostras seguem uma linha de tendência, e através dela foi determinada a equação de regressão para as amostras da Pedreira Sá. Através desta equação de conhecendo densidade regressão. а pode-se estimar com bastante precisão a porosidade, sendo assim, uma maneira rápida de estimar a porosidade de uma amostra desta Pedreira.

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

Figura 6: Relação entre a porosidade e a densidade total.

A figura 7 apresenta a relação entre a velocidade de propagação da onda P (Vp) medida sob 40 MPa de pressão efetiva confinante е а porosidade. Observa-se na figura 7 que Vp decresce de forma consistente com o aumento da porosidade. também Nota-se uma correlação muito boa podendo-se dizer que o material é, em sua maioria, homogêneo.

HWorkshop de Engenharia de Petróleo

Figura 7: Relação entre Vp medida sob 40 MPa de pressão confinante efetiva e porosidade.

Medidas de velocidade de propagação da onda S na direção do eixo das amostras foram realizadas com direções de polarização mutuamente perpendiculares. Deste modo, em cada amostra foram obtidos dois valores de Vs: Vs₁ e Vs₂.

A figura 8 apresenta a relação entre os valores de Vs₁, medidas sob 40 Mpa de pressão confinante efetiva e a porosidade. De modo semelhante à figura 7, observa-se um decréscimo consistente de Vs₁ com o aumento da porosidade.

A amostra SAP5-An2 que demonstrou um valor Vp acima do esperado na figura 7, também apresentou valores de Vs₁ acima do esperado, o que confirma ser um efeito relativo à alteração mecânica ou de composição mineral daquela amostra. Comportamento semelhante se observa na Figura 9 em relação à Vs₂.

Figura 8: Relação entre Vs₁ medida sob 40 MPa de pressão confinante efetiva e porosidade.

Figura 9: Relação entre Vs₂ medida sob 40 MPa de pressão confinante efetiva e porosidade.

A análise de anisotropia, através da razão Vs1/Vs2, apresentada na figura 10, indica um grau de anisotropia muito baixo, limitado a 1,5%, sem uma clara relação com a porosidade.

Figura 10: Relação entre a razão Vs₁/Vs₂, medida sob 40 MPa de pressão confinante efetiva e a porosidade.

Os módulos elásticos das amostras secas foram determinados a partir da densidade total e das velocidades das ondas P e S_1 . As figuras 11 a 14 apresentam as relações entre o módulo de elasticidade e a porosidade, módulo de cisalhamento e a porosidade, a incompressibilidade e a porosidade e razão de Poisson e a porosidade, respectivamente.

A figura 11 mostra que o módulo de elasticidade das amostras apresenta uma forte correlação inversa com а porosidade. Isto é esperado, pois 0 de porosidade provoca aumento uma redução resistência na uniaxial da amostra.

www.conepetro.com.br

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

Figura 11: Relação entre o módulo de elasticidade para amostras secas sob pressão confinante de 40 MPa e a porosidade.

A figura 12 apresenta a relação obtida entre a incompressibilidade medida sob MPa de pressão efetiva е 40 а porosidade. Observa-se que а incompressibilidade diminui fortemente com o aumento da porosidade, variando cerca de 13 GPa, para uma amostra com porosidade próxima de 20%, para 5 GPa em uma amostra com porosidade igual a 34%.

Figura 12: Relação entre a incompressibilidade para amostras secas sob pressão confinante efetiva de 40 MPa e a porosidade

A figura 13 apresenta a relação entre o módulo de cisalhamento e a porosidade. módulos de cisalhamento Os das amostras da formação Cotinguiba também apresentam uma correlação inversa com os valores de porosidade.

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

Figura 13: Relação entre o módulo de cisalhamento para amostras secas sob pressão confinante efetiva de 40 MPa e a porosidade.

A figura 14 apresenta o comportamento da razão de Poisson em função da porosidade. Observa-se uma suave tendência de redução do valor de (Razão de Poisson) com o aumento de porosidade.

Figura 14: Relação entre a razão de Poisson para amostras secas sob pressão confinante efetiva de 40 MPa e a porosidade.

4. CONCLUSÕES

Os valores de densidade de grãos medidos indicam que as amostras da Formação Cotinguiba não são calcários puros.

A densidade total das amostras apresentam correlação inversa com a porosidade, ou seja, decrescem com o aumento da porosidade.

Para as amostras apresentadas observa-se que os valores de porosidade medidos encontram se entre o intervado de 20% e 34%. A partir destes valores, concluímos que a Formação apresenta um bom potencial para reservatório carbonático.

As velocidades das ondas elásticas indicam um reduzido nível de anisotropia, limitado a 1,5%, para todas as amostras analisadas. De maneira geral, as propriedades elastodinâmicas diminuem de forma consistente com o aumento da porosidade.

5. REFERÊNCIAS BIBLIOGRÁFICAS

Aquino, G.S., Lana, M.C. *Exploração na Bacia de Sergipe-Alagoas: O "Estado da Arte".* Boletim de Geociências.

Bandeira, A. N. Jr. Sedimentologia e microfácies calcárias das Formações Riachuelo e Cotinguiba da Bacia Sergipe-Alagoas. 1978. 69 p. Dissertação de Mestrado, Universidade de São Paulo.

Schaller, H. *Revisão Estratigráfica da Bacia Sergipe-Alagoas.* Boletim Técnico da Petrobras. V.12, n. 1, p. 21-86. 1969.

l Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

Soares, J. A. *Propriedades Físicas das Rochas.* Boletim SBGF. Rio de Janeiro: Sociedade Brasileira de Geofísica, n.1. (2011).

Tucker, M. Wright, P. (1990). *Carbonate Sedimentology.* Blackwell. USA. 421 p.