III Workshop de Engenharia de Petróleo

ESTUDO NUMERICO DO PROCESSO DE SEPARAÇÃO ÁGUA/ÓLEO VIA MEMBRANA CERÂMICA USANDO MÓDULOS DUPLO TUBO

Acto de Lima Cunha¹, Severino Rodrigues de Farias Neto², Antonio Gilson Barbosa de Lima³, Enivaldo Santos Barbosa⁴

¹ Universidade Federal de Sergipe, Núcleo de Engenharia de Petróleo - <u>actolimacunha@yahoo.com.br</u> ² Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia Química -<u>fariasn@deq.ufcg.edu.br</u> ³ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia Mecânica -

gilson@dem.ufcg.edu.br

⁴ Universidade Federal de Campina Grande, Departamento de Engenharia de Petróleo - <u>enivaldo.sb@gmail.com</u>

RESUMO

Um dos principais problemas associados aos processos de separação por membranas é a queda de fluxo de permeado, o que limita a aplicação do processo na indústria, devido à acumulação de concentração de soluto na superfície da membrana (polarização por concentração). Neste sentido, um estudo numérico sobre o processo de separação água/óleo via membranas porosas tubulares considerando um domínio computacional tridimensional foi realizado com auxílio do software comercial ANSYS CFX 12. Um modelo matemático em regime permanente, aplicado a um fluido incompressível, escoando em regime turbulento no interior de módulos de filtração foi desenvolvido. Os resultados numéricos mostraram que o modelo matemático utilizado foi capaz de prever o acumulo de óleo (polarização por concentração) ao longo do comprimento das membranas tubulares. E ao se utilizar o módulo de separação casco/membrana tubular proposto em regime de escoamento turbulento, verificou-se um favorecimento da transferência de massa e uma dispersão da camada limite de concentração.

Palavras-chave: Simulação numérica. Escoamento turbilhonar. Membrana cerâmica. Polarização por concentração.

1. INTRODUÇÃO

Os processos de separação com membranas (PSM) vêm ganhando espaço cada vez maior nas etapas de separação dos processos industriais, como em separação por filtração de misturas líquidas e diálise. Um dos principais estudos diz respeito à formação da limite concentração camada de (concentração por polarização) de soluto na superfície da membrana. Segundo [1998a] polarização Song por а concentração é um fenômeno reversível e que ocorre nos primeiros minutos de filtração, onde irá acontecer a formação de um perfil de concentração perpendicular à superfície da membrana, resultando no aumento da concentração das espécies retidas próximo à superfície da membrana. O estabelecimento de um gradiente de concentração provoca uma resistência adicional à transferência de massa, levando à diminuição do fluxo permeado.

O entendimento do comportamento da camada polarizada está intimamente relacionado com a transferência de massa e a hidrodinâmica em módulos de membranas. A melhoria na hidrodinâmica pode ser alcançada mediante mudanças na configuração do módulo, presença de

III Workshop de Engenharia de Petróleo

canas ou regiões Segundo Vasanth *et al.* [2013] o turbulentos e coeficiente de rejeição da membrana ao [KAUR E soluto é dado por: Essas estratégias

$$R(\%) = \left[1 - \frac{C_p}{C_0}\right] x 100$$
 [1]

onde C_p e C_0 são as concentrações de óleo no permeado e na alimentação, respectivamente.

Diante do contexto apresentado e do vasto campo de pesquisa para um melhor desempenho dos PSM, o presente trabalho associa o interesse tecnológico a proposição com de uma nova configuração de módulo de permeação utilizando membranas cerâmicas tubulares na presença de um escoamento turbilhonar induzido por uma entrada tangencial.

2. METODOLOGIA

O domínio de estudo corresponde a um módulo constituído de dois tubos, o interno correspondendo à membrana cerâmica que foi usada para o tratamento de água produzida, conforme ilustra a Figura 2.

Saída de filtrado

Figura 2: Dispositivo de separação de efluente contendo uma membrana com entrada tangencial do efluente.

Este dispositivo possui uma entrada tangencial de efluente e uma saída tangencial de concentrado; o filtrado é retirado pelo interior da membrana após a

instabilidades como chicanas ou regiões corrugadas, regimes turbulentos e escoamento pulsado [KAUR E AGARWALL, 2002]. Essas estratégias são responsáveis pela diminuição da camada polarizada próxima a superfície da membrana.

Uma representação da polarização de concentração é esquematizada na Figura 1, sua formação pode ser descrita pela teoria do filme, onde os mecanismos de transferência de massa em processos de microfiltração e ultrafiltração são em três fluxos: baseados 0 fluxo convectivo em direção à membrana JC, o fluxo do soluto através da membrana JC_p e o fluxo difusivo da solução $D\frac{dC}{dx}$ de para а membrana acordo com a lei de Fick. Considera-se, também, que à distância u da superfície da membrana ocorre mistura completa e que а concentração no seio de alimentação é C_0 . Contudo, nas proximidades da membrana, forma-se uma camada limite onde a concentração do soluto aumenta e atinge um valor máximo na superfície C_m [MULDER, 1996].

filtração, sentido esse contrário ao que vem sendo avaliado na literatura (para módulo de permeação utilizando membranas cerâmicas) tornando-a dessa maneira, uma proposta inovadora, objetivando a otimização no projeto de módulos contendo membrana cerâmicas.

As dimensões dos módulos de microfiltração duplo tubo utilizados nas simulações numéricas estão representadas na Tabela 1 e na Figura 2.

Tabela 1: Dimensões geométricas dos módulos de permeação (mm).

Dimensões	Módulo	Módulo	Módulo	
(mm)		II		
Comprimento, L	150	150	150	
Diâmetro da membrana, D _i	20	20	20	
Diâmetro do tubo externo, D _e	50	45	40	
E=S	15	12,5	10	
Т	40	40	40	
Μ	114	114	114	
С	18	18	18	

Figura 3: Representação dos módulos duplo tubo com diferentes espaços anulares tubo/membrana com entrada e saída tangenciais.

Na Figura 4 estão representadas as três malhas resultantes referentes aos módulos de separação (Módulo I, Módulo II e Módulo III). As malhas dos módulos I, II e III foram geradas usando elementos

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

hexaédricos, contendo 343.140, 313.424 e 305.330 elementos, respectivamente, sendo possível observar o detalhe do refino da malha próximo à superfície da membrana.

Figura 4: Malhas estruturadas para diferentes espaços anulares casco/membrana e dutos de entrada e saída tangencial.

2.1. Modelagem matemática

O modelo matemático usado para descrever o escoamento do fluido no interior do dispositivo e no meio poroso corresponde a uma generalização das Equações de conservação da massa [2], quantidade de movimento (Navier-Stokes) [3] e a Equação [4] de transporte de massa levando em consideração que:

- O escoamento é considerado em regime turbulento;
- O efeito gravitacional é desprezível;

III Workshop de Engenharia de Petróleo

- Fluido é incompressível e regime permanente;
- Nenhuma condição de deslizamento é assumida na superfície da membrana, na parede do casco do dispositivo e nos tubos de conexão da membrana;
- A velocidade de permeação de parede é determinada a partir do modelo de resistência em série;
- Não é considerado obstrução dos poros do meio poroso pelo soluto;
- Não há reação nem adsorção do soluto na superfície de contato no meio poroso;
- É considerada a resistência decorrente da camada de concentração na interface fluido-membrana (resistência da polarização por concentração);

- Conservação da massa

$$\nabla \bullet (\dots \vec{U}) = 0$$
 [2]

- Conservação da quantidade de movimento

$$\nabla \bullet (\dots \overrightarrow{U} \otimes \overrightarrow{U}) - \nabla \bullet (\sim_{ef} \nabla \overrightarrow{U}) = -\nabla p + \nabla \bullet (\sim_{ef} (\nabla \overrightarrow{U})^T) \quad [3]$$

onde \sim_{ef} corresponde a viscosidade efetiva definida como sendo:

$$\sim_{ef} = \sim + \sim_t$$
 [4]

onde ~ é a viscosidade dinâmica e \sim_{t} a viscosidade turbulenta.

- Equação de transporte de massa

$$\vec{U} \bullet \nabla C = D \nabla^2 C$$
 [5]

2.1.1. Condições de contorno

- Na entrada tangencial do módulo de filtração;

Vazão (Q) prescrita e igual a 1,0 kg/s, e uma concentração de óleo em água (C₀) de 1,0 kgm⁻³.

 Na saída tangencial do módulo de filtração;

Pressão (P) prescrita e igual a 10125Pa.

- Na parede do casco do módulo de filtração, tubos de conexão da membrana e tubos de entrada e saída tangencial;

Assume-se que a condição de não deslizamento é válida (velocidade na parede igual à zero em todas as direções).

- Na parede porosa da membrana (z=R)

Na parede da membrana assume-se que a condição de não deslizamento é válida. Desprezando-se a influência da rugosidade local, devido à natureza porosa da parede:

$$U_x = 0 \ e \ U_y = 0$$
 [6]

Através da parede porosa, a velocidade radial U_z é igual à velocidade de permeação U_w , então:

$$U_z = U_w$$
 [7]

No seio da membrana assume-se que não há acumulo de partículas no estado estacionário, isto é, as partículas são praticamente 100% rejeitadas pela membrana. Assim sendo, pode-se escrever:

$$U_{w}C = D\frac{\partial C}{\partial y}$$
[8]

A velocidade de permeação local U_w dada pela lei de Darcy, escrita com um modelo de resistência em série [PARIS *et al.*, 2002; DAMAK *et al.*, 2004a] foi implementada como um termo fonte na condição de contorno de saída do permeado, como segue:

www.conepetro.com.br

 $U_{w} = \frac{\Delta P}{\sim (R_{m} + R_{p})}$ [9]

onde P é a pressão transmembrana, definida como sendo a diferença entre a pressão média interface na fluido/membrana, $(\overline{P}),$ pressão е а externa а membrana P_{externa}. R_{m} corresponde a resistência hidráulica da membrana é dada por:

$$R_m = \frac{Espessura\ da\ membrana}{Permeabilidade\ da\ membrana}$$
[10]

A resistência específica da polarização por concentração é um parâmetro muito importante que afeta o fluxo de permeado. De acordo com a filtração frontal (*dead-end filtration*), a resistência específica da polarização por concentração (R_p) é definida como a resistência por unidade de espessura da polarização por concentração, como segue:

$$R_p = \int_{R-u_p}^{R} r_p du_p$$
 [11]

onde, $u_p \acute{e}$ a espessura da camada polarizada e $r_p \acute{e}$ a resistência específica.

Se a concentração na camada polarizada é assumida como sendo homogênea, a Equação [11] assume a forma:

$$R_p = r_p \mathsf{u}_p \qquad [12]$$

A equação utilizada para determinar a variação local da espessura da camada limite de concentração por polarização foi desenvolvida por Damak et al. [2004b]. Nesta formulação, а camada de concentração por polarização, u, é aproximadamente igual à distância entre a superfície da membrana e um valor onde concentração а é próxima suficientemente do valor da concentração de entrada, de modo que o equilíbrio entre os fluxos convectivo e difusivo é

III Workshop de Engenharia de Petróleo

atingido quando
$$rac{C-C_0}{C_0}$$
 < 0,001. Assim, u_p ,

pode ser determinada a partir de correlações empíricas, a exemplo, a proposta por Damak *et at.* [2004a], discutida a seguir:

$$u_{p} / d = 2 \left(\frac{z}{d}\right)^{0.33} (\text{Re } Sc)^{-0.33} \text{Re}_{w}^{-0.3} \times (1 - 0.4377 Sc^{-0.0018} \text{Re}_{w}^{-0.1551})$$
[13]

onde *d* é o diâmetro interno, *z* representa a coordenada axial ao longo da membrana, Re é o número de Reynolds axial, Re_w é o número de Reynolds do permeado na parede e *Sc* é o número de Schmidt. As condições de utilização da Equação [13] são tais que *Sc* = 600~3200, Re = 300~1000, Re_w = 0,02~0,3, e z/d=0~100.

Segundo Damak *et al.* [2004b] os parâmetros (Re, Sc, Re_w e z/d) da Equação [13] correspondem a uma sistema de separação por membranas para a ultrafiltração de líquido e baixa concentração de partículas e escoamento laminar na parede do tubo poroso.

A resistência específica r_p pode ser determinada por meio da correlação de Kozeny-Carmen, como segue:

$$r_p = 180 \frac{(1 - V_p)^2}{a_p^2 V_p^3}$$
[14]

onde, a_p é o diâmetro médio de partícula e v_p é a porosidade da camada de polarização por concentração.

A Equação [14] é válida para partículas esféricas dispersas, não deformáveis e porosidade variando no intervalo 0,35 v, 0,75.

Outros dados importantes que foram definidos na solução do problema correspondem às propriedades do fluido e do meio poroso. As propriedades físicas e químicas do óleo foram consideradas as mesmas do solvente, por se tratar de uma solução diluída. Estas propriedades são: viscosidade dinâmica (1,1 Pa.s), Massa molar (18,02 kg/kmol) e densidade (997 kg/m³).

Para estudar o comportamento do processo de filtração em um módulo contendo membrana(s) tubular(es) fez-se um estudo de casos considerando aspectos geométricos do módulo de filtração, conforme reportado na Figura 3 e Tabela 1.

Para as simulações foi utilizado o modelo de turbulência SST, já que este se mostra mais completo ao se estudar o fenômenos do escoamento turbulento da mistura água/óleo, devido ao gradiente de pressão e concentração mais acentuado próximo à interface fluido/membrana.

Nas simulações foram utilizados um coeficiente de difusão (D_{ab}) igual a 1,0x10⁻⁹ m²s⁻¹, porosidade e permeabilidade da membrana iguais a 0,3 e $3x10^{-11}$ m² (Damak *et al.* 2004a) respectivamente, diâmetro médio das partícula de óleo (a_p) igual a 63 µm, porosidade da camada polarizada igual a 0,35 e resistência específica da polarização por concentração (R_p) igual a 2,5x10⁻⁸ m⁻¹ obtida a partir das Equações [12, 13 e 14].

3. RESULTADOS E DISCUSSÃO

O estudo geométrico dos módulos de filtração (I), (II) e (III) foi realizado com o objetivo de avaliar a influência da geometria no fluxo de permeado, pressão transmembrana, perfil da concentração de óleo no interior dos módulos, campo de concentração, campo de pressão e eficiência de retenção nos módulos 3D.

3.1. Fluxo de permeado e pressão transmembrana.

O campo de pressão foi avaliado para os módulos (I), (II) e (III), que possuem diferentes espaços anulares e diâmetros dos tubos de entrada e saída tangencial, porém, para um mesmo

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

módulo, a espessura do espaço anular (ea $= D_e - D_i$) é igual aos diâmetros da entrada (E) e saída tangencial (S). Esta escolha assegura que a razão E/e_a ou S/e_a fossem iquais a 1, conferindo um comportamento semelhante nas três geometrias е assegurando o mesmo nível de expansão e contração, o que seria diferente para $E/(D_e-D_i)>1$ ou $E/(D_e-D_i)<1$, conforme é relatado em Farias Neto [1997]. Na Figura 5 (a), (b) e (c) estão representadas a distribuição de pressão no interior dos módulos para uma vazão de alimentação de 1,0 kg/s, para os três módulos estudados. Pode-se observar que a para variação de pressão, os três módulos estudados. maiores são próximos da região de entrada do fluido e nas vizinhanças do casco do módulo de filtração, e que reduz à medida que se aproxima da região de saída do concentrado e da parede da membrana cerâmica.

A perda de carga no sistema é decorrente ao atrito, ou seja, cisalhamento do fluido com as paredes do dispositivo e em decorrência do fluxo de permeado, que colabora para redução da velocidade do escoamento no espaço anular.

O campo de pressão para o Módulo I, Figura 5 (a), apresenta variações entre 110 kPa e 132 kPa, com uma pressão média na parede do permeado (interface fluido/membrana) igual a 111 kPa, o que corresponde а uma pressão transmembrana média próxima a 0,11 bar e iguais a 126,4 kPa e 167,8 kPa para os módulos II e III, respectivamente, o que corresponde uma pressão а transmembrana média próximo à 0,25 bar para o módulo II e 0,66 bar para o módulo III. Isto é resultado do aumento da velocidade do escoamento no interior do dispositivo devido redução dos à diâmetros dos tubos (entrada e saída) tangenciais e do espaço anular dos módulos de separação.

III Workshop de Engenharia de Petróleo

pressão na interface fluido-membrana. Este fato favorece um aumento da pressão transmembrana e, consequentemente um aumento na velocidade do filtrado.

Figura 6: Ilustração do posicionamento das linhas na superfície da membrana.

Figura 7: Pressão na parede permeável, nas posições angulares θ (0, 90, 180 e 270°), em função do comprimento da membrana para os três módulos (I, II e III) avaliados.

Figura 5: Campo de pressão no plano zx em y= 0,0375; 0,075; 0,1125 m e no plano yz, (a) Módulo (I), (b) Módulo (II) e (c) Módulo (III).

objetivo Com 0 de avaliar 0 comportamento do perfil da pressão na interface fluido-membrana (permeado), foram tomadas quatro posições angulares, 0, (0, 90, 180 e 270°), Figura 6, e foi representada a pressão em função da posição, y, ao longo da membrana cerâmica em θ igual a 0, 90, 180 e 270°, conforme ilustrado na Figura 7 (a), (b) e (c). Observa-se que o módulo com menor diâmetro do tubo de entrada (E) e espaço anular (e_a) apresenta maiores valores da

3.2. Campo de concentração e velocidade.

O campo de concentração foi avaliado para os três Módulos de filtração, que possuem diferentes espaços anulares e diâmetros dos tubos tangenciais (corrente de alimentação e saída do concentrado) como apresentada na Tabela 1.

Na Figura 8 (a), (b) e (c) são representadas de OS campos concentração do soluto sobre um plano longitudinal vz. bem como sobre três planos transversais xz (A, B e C) para os três módulos de separação (I, II e III). Observa-se. nos três módulos, а existência de regiões onde а concentração é próxima da concentração da alimentação (1,0 kg/m^{3}), е concentrações mais elevadas à medida que o fluxo se aproxima da saída do concentrado.

É possível verificar que devido a pela succão provocada pressão transmembrana maiores as concentrações óleo encontra-se de próximo a parede do permeado para os três módulos avaliados. Porém, devido à turbulência do meio, provocada pela velocidade do escoamento, е principalmente, devido à configuração dos módulos com entrada e saída tangencial e espaco anular que favorece 0 escoamento turbilhonar, o gradiente de concentração apresenta-se disperso em todo espaco anular, ou seja, não há formação da camada polarizada tão nítida na superfície da membrana. A quebra da pelo camada polarizada escoamento turbilhonar significa uma maior transferência de massa, que limita a formação de uma camada limite de concentração óleo na interface fluido/membrana decorrência em da hidrodinâmica do escoamento. е consequentemente, uma redução da resistência ao fluxo de permeado devido à deposição de soluto na parede da membrana.

Figura 8: Campo de concentração no plano zx em y= 0,0375; 0,075; 0,1125 m e no plano yz, (a) Módulo (I), (b) Módulo (II) e (c) Módulo (III).

Comparando de 0 campo concentração apresentado pelos três módulos de filtração, verificou-se que o módulo III apresentou uma concentração média de óleo na parede do permeado em torno de 1,015 kg/m³, maior que os módulos I e II com concentrações médias de aproximadamente 1,003 kg/m³ e 1,007 kg/m^3 , respectivamente. Embora а formação polarização por da concentração tenha sido substancialmente reduzida pela hidrodinâmica do escoamento, a presença de óleo na superfície da membrana não é completamente eliminada, tendo em vista que o diferencial de pressão (pressão transmembrana) e o fluxo de permeado atraem as partículas de óleo e as mantém aderidas à parede do permeado. O aumento da pressão transmembrana e do fluxo de permeado auxiliam esse processo.

Ainda na Figura 8 observa-se que o módulo III apresentou maior concentração de óleo ao longo da parede do permeado, contudo, foi o módulo que forneceu o maior fluxo de permeado, como pode ser observado nas Figuras 9, 10 e 11.

Nas Figuras 9 (a), (b) e (c), estão representadas as velocidades de permeado, U_w, em função da posição y ao longo da membrana em quatro posições angulares (0, 90, 180 e 270°), conforme ilustrado na Figura 6. É possível verificar uma redução do fluxo de permeado com o comprimento da membrana para os três módulos avaliado. Isso ocorre devido ao aumento da concentração de óleo ao longo do comprimento da membrana à medida que o fluxo de permeado ocorre com a distância axial do escoamento. Além disso, a redução da velocidade do escoamento no espaço anular devido à carga e a reducão perda de da quantidade de matéria pelo próprio fluxo de permeado favorece a redução do fluxo de permeado ao longo da membrana.

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

Figura 9: Velocidade de Permeação em função do comprimento da membrana: (a) Módulo I ($D_e = 15,0$ mm), (b) Módulo II ($D_e = 12,5$ mm) e (c) Módulo III ($D_e = 10,0$ mm).

Comparando as velocidades de permeado apresentado pelos três módulos de filtração (Figuras 9 (a), (b) e verificou-se que o módulo (c)), apresenta uma velocidade de permeação média em torno de 13,7x10⁻⁴ m/s, superior aos módulos I e II, com velocidade de permeação média aproximada de 2,25x10⁻⁴ 5,92x10⁻⁴ m/s е m/s, respectivamente. Como discutido anteriormente, a redução dos diâmetros dos tubos tangenciais (entrada (E) e saída (S)) e o espaço anular (e_a) acarreta no aumento da velocidade do escoamento pelo interior do dispositivo casco/membrana aumentando а turbulência do escoamento e da pressão do sistema, e, consequentemente, da pressão transmembrana, o que favorece o fluxo convectivo para dentro do meio poroso, promovendo o fluxo de permeado e a passagem de soluto pela parede

porosa da membrana, reduzindo a eficiência de retenção e aumentando a concentração de óleo no permeado como mostra a Tabela 2.

Os módulos de filtração I, II e III apresentaram coeficiente de rejeição, calculado utilizando a Equação [1], de 99,9, 99,7 e 99,0%, respectivamente, o que implica em uma alta taxa de rejeição da membrana ao soluto, o que é desejável, visto que o objetivo da filtração por membrana é obter uma água tratada (obtida na corrente de permeado) isenta ou com a menor quantidade possível de óleo.

Tabela 2: Concentração media de óleo no
permeado para os módulos avaliados.

	Módulo	Módulo	Módulo
	I	II	III
Concentração de óleo no permeado (mg/L)	1,0	3,0	10,0

Todos os módulos apresentaram eficiência de retenção superior a 99% e o módulo III apresentou um fluxo de permeado 6,0 vezes maior que o módulo I e 2,3 maior que o módulo II.

4. CONCLUSÕES

- O modelo numérico utilizado nesta pesquisa prediz com sucesso os mecanismos fundamentais envolvidos no comportamento de declínio do fluxo de permeado durante a filtração de fluxo cruzado. É importante salientar a influência do comprimento da membrana nos perfis de concentração axial.
- Os parâmetros geométricos do módulo de separação afetam diretamente a distribuição da concentração de óleo no interior do módulo, a pressão transmembrana e o fluxo de permeado.

l Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

6. REFERÊNCIAS BIBLIOGRÁFICAS DAMAK, K., AYADI, A., SCHMITZ, P., ZEGHMATI, B., Modeling of cross-flow membrane separation processes under laminar flow conditions in tubular membrane, Desalination, v. 168, p. 231-239, 2004a.

DAMAK, K., AYADI, A., ZEGHMATI, B., SCHMITZ, P., **Concentration polarisation in tubular membranes - a numerical approach,** Desalination, v. 171, p. 139-153, 2004b.

FARIAS NETO, S. R., Simulation numerique des ecoulements annulaires non-etablis de types axial et tourbillonnaire - cas du transfert de matiere, Tese de Doutorado da Universidade de Nantes – ISITEM, 1997.

KAUR, J., AGARWAL, G.P., Studies on transmission in thin channel flow module: the role of dean vortices for improving mass transfer, Journal of Membrane Science, v. 188, p. 9-20, 2002.

MULDER, M., **Basic principles of membrane technology**, 1st Ed., Kluver Academic Publishers, Netherlands, p. 75, 1996.

PARIS, J., GUICHARDON, P., CHARBIT, F., **Transport phenomena in ultrafiltration: a new two-dimensional model compared with classical models,** Journal of Membrane Science, v. 207, p. 43-58, 2002.

SONG, L. Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling, Journal of Membrane Science, v. 139, p. 183-200, 1998a.

VASANTH, D., PUGAZHENTHI, G., UPPALURI, R., **Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes**, Desalination, v. 320, p. 86-95, 2013.