I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

O modelo Drift-Flux no CFX 14 aplicado ao escoamento de petróleo com partículas dispersas

Ewerton de Oliveira Teotônio Bezerra¹, Bianca Thamires Alexandre Silva², José Jefferson da Silva Nascimento³, Bruna Thalita Alexandre Silva⁴, Wanggles Rodrigues Prates⁵

¹ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia de Materiais - <u>ewerton.teotonio@hotmail.com</u>

² Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia Mecânica - biancathamires1 @gmail.com

³ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia de Materiais - jefferson@dema.ufcg.edu.br

⁴ Universidade Federal de Alagoas, Unidade Acadêmica de Engenharia Civil brunathallyta @hotmail.com

⁵ Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia Mecânica - wanggles.eng @gmail.com

RESUMO

Este trabalho apresenta um estudo numérico com simulação computacional do fluxo de petróleo com partículas dispersas de água em óleo, utilizando o software ANSYS CFX 14.0®. As equações de conservação de massa e momento e as fases contínua e equações dispersas de baseiam-se no modelo de Drift-Flux. O modelo de turbulência adotado foi o K-Épsilon. Neste sentido, são apresentados e discutidos a deposição, fração volumétrica e taxas de fração mássica de partículas.

Palavras-chave: simulação,fluidos,CFX,Drift-Flux,partículas.

1. INTRODUÇÃO

O petróleo e a água encontram-se fundo poço, praticamente no do imiscíveis, o que facilita seu processo de separação. Ao escoarem através da produção е linhas de submetidas à agitação e cisalhamento e, presença de surfactantes naturais no petróleo, ocorre à formação de emulsões estáveis do tipo água-óleo. Essas emulsões podem ser fácil ou dificilmente "quebradas" em função das propriedades do óleo, da água e dos seus produzido percentuais. 0 líquido separado e dele são retirados água, sal e sólidos presentes; a seguir envia-se o óleo para o refino. A água que contém outros rejeitos e óleo residual (suspenso, emulsionado, solubilizado) é tratada e dada uma destinação final. A fração de água produzida junto com o petróleo é decorrente da água está naturalmente presente no reservatório ou porque a mesma foi injetada no reservatório ou no tubo de produção.

Neste sentido, está pesquisa tem como objetivo analisar a fração mássica e a deposição de partículas de água em tubulação de petróleo do tipo utilizando o modelo Drift-flux descrito em Ansys [2009], Parker et al. [2010] e Chen et al [2006]. Assim foram realizadas simulações computacionais utilizando o software comercial CFX 14.0, que resolve numericamente equações as conservação, permitindo estimar comportamento de diferentes tamanhos de partículas de água presentes no escoamento multifásico água-óleo.

2. METODOLOGIA

O presente estudo foi realizado utilizando a ferramenta CFD

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

(Computational Fluid Dynamics), do software ANSYS CFX® 14.0.

1.1. Geometria, malha e condições de contorno

No estudo computacional aplicado a este trabalho, foi utilizado o software de simulação computacional ANSYS CFX 14.0®, para a construção da geometria, e assim representar o volume de controle através do qual o fluido escoa. A malha é do tipo hexaédrica e seus dados se encontram na tabela abaixo.

Tabela 1: Dados que geram a malha

Tabola 1. Dados que gerant a maina				
	Malha	Malha	Malha	
	1	2	3	
Espaçamento do volume (cm)	0,53	0,30	0,10	
Ângulo mínimo (Deg)	2,50	2,50	10,0	
Nº de nós	981	5630	119204	
Nº de elementos tetraédricos	3839	26406	644593	

As condições de contorno de uma malha são de crucial importância para o resultado final da simulação, pois definem as condições físicas na fronteira do sistema. As condições utilizadas no presente estudo estão dispostas na Tabela 2.

Tabela 2: Condições de contorno da malha utilizada.

maina dilizada.					
Tipo	Detalhe				
Inlet	Subsônico				
	Taxa de Fluxo	0,0563			
	de massa				
	Turbulência				
	Média 5%				
	Direção do				
	fluxo normal				
Wall	Sem				
	deslizamento				
	Parede lisa				
Outlet	Pressão	1 atm			
	Tipo Inlet Wall	Tipo Detalhe Inlet Subsônico Taxa de Fluxo de massa Turbulência Média 5% Direção do fluxo normal Wall Sem deslizamento Parede lisa			

Estática	
Subsônico	

A Figura 1 apresenta a tubulação gerada em formato de "L" e seus respectivos contornos destacadas em laranja. Já a Figura 2 evidencia a malha.

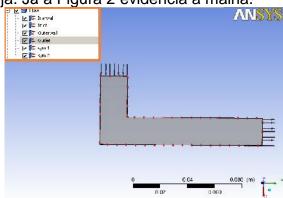


Figura 1: Tubulação "L"

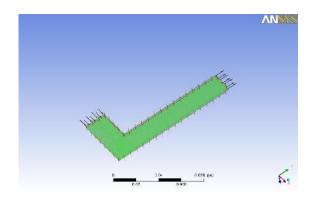


Figura 2: Malha gerada

O Equacionamento matemático do estudo é baseado no modelo multifásico Drift-Flux Mode. Esse modelo é uma do simplificação modelo Euleriano Multifásico e resolve um conjunto de equações que estão demonstradas abaixo. Logo, nosso objetivo é simular o escoamento de petróleo, nosso fluido de fase contínua, contendo partículas de água dispersa.

$$\frac{\partial \rho_{m}}{\partial t} + \nabla \cdot \vec{\mu}_{m} = 0$$
 [1]

Equação de transporte de cada fase:

$$\frac{\partial}{\partial t}(\alpha_k \rho_k) + \nabla \cdot (\alpha_k \rho_k | \vec{i}_k) = \dot{m}_k$$
 [2]

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

Equação de momento da mistura:

$$\begin{array}{l} \frac{\partial}{\partial t}(\rho_{m}\vec{\mu}_{k}) + \nabla \cdot (\dot{\rho}_{m}\vec{\mu}_{m}\vec{\mu}_{m}) + \nabla \cdot \\ \sum_{k=1}^{n} a_{k}\rho_{k}\vec{\mu}_{kdrift}\vec{\mu}_{kdrift} = \nabla \cdot \sigma_{m} + \rho_{m}\vec{\xi} \end{array} \quad [3]$$

Equação adicional da energia para a mistura e fases:

$$\begin{split} &\frac{\partial}{\partial_t} \sum_{k=1}^n (\alpha_k \rho_k E_k) + \nabla \cdot \sum_{k=1}^n (\alpha_k \vec{V}_k (\rho_k h_k + \frac{\vec{V}_k}{2})) = \nabla \cdot (k_{eff} \nabla T) + S_E \end{split} \tag{4}$$

1.2. Processamento

As simulações foram realizadas levando em consideração que: o escoamento era isotérmico (298 K), estacionário e em regime de escoamento turbulento (tratado numericamente pelo modelo k-). Adotou-se a pressão e densidade de referência igual a zero Pascal e 997 Kg/m3, respectivamente; o diâmetro médio da gota de água (fase dispersa) igual 1e-06 m.

1.3. Resolução das equações (CFX-SOLVER 14.0®)

estabelecer Após todos os parâmetros e equações a serem utilizadas simulação, através do CFX-PRE 14.0®, foi gerado um conjunto de equações lineares acopladas, que foram resolvidas com o auxílio da ferramenta computacional CFX-SOLVER® 14.0. Na verdade, só é possível a aplicação da fluidodinâmica computacional devido ao grande poder computacional existente nos dias de hoje. Os parâmetros do Solver são: 100 Iterações máximas e critério de convergência de 10⁻⁴.

3. RESULTADOS E DISCUSSÃO

Dentre as diversas comparações realizadas optou-se por ilustrar através do CFX-PÓS, no presente trabalho, as frações mássicas, volumétricas e de deposição no escoamento de petróleo

numa tubulação do tipo "L", conforme será ilustrado nas figuras seguintes.

As Figuras 3, 4 e 5 mostram claramente a deposição das partículas maiores (large) na região de entrada. Podemos observar que tais partículas, por serem mais densas, não conseguem se distribuir uniformemente pelo sistema e acaba se depositando logo na entrada da tubulação.

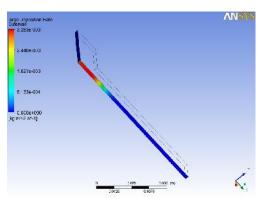


Figura 3: Linha de deposição na tubulação das partículas grandes de água

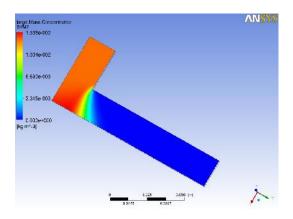


Figura 4: Concentração mássica das partículas grandes de água numa tubulação de escoamento de petróleo

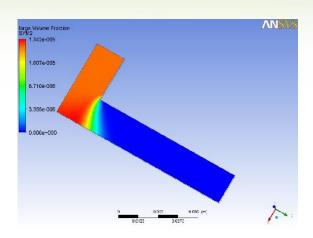


Figura 5: Fração de volume das partículas grandes de água numa tubulação de escoamento de petróleo

As Figuras 6, 7 e 8 ilustram os detalhes do comportamento das partículas médias (medium). As mesmas conseguem fluir e se depositar ao longo do sistema, concentrando sua deposição em uma posição intermediária da tubulação

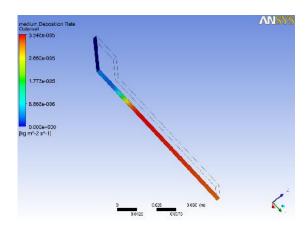


Figura 6: Linha de deposição na tubulação das partículas médias de água

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

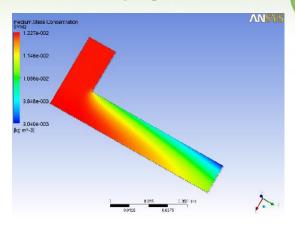


Figura 7: Concentração mássica das partículas médias de água numa tubulação de escoamento de petróleo

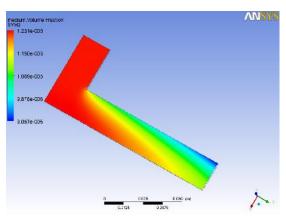


Figura 8: Fração de volume das partículas médias de água numa tubulação de escoamento de petróleo

Nas Figuras 9, 10 e 11 estão distribuições representando as das frações volumétrica mássica, de deposição para as partículas pequenas (small) da água. Observa-se que as partículas pequenas se depositam na região de saída, ou seja, escoam no fluido com maior facilidade, sem deposição significativa nas paredes do duto.

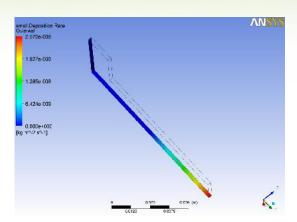


Figura 9: Linha de deposição na tubulação das partículas pequenas de água

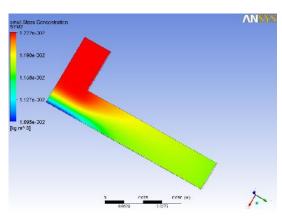


Figura 10: Concentração mássica das partículas pequenas de água numa tubulação de escoamento de petróleo

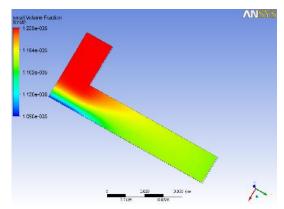


Figura 11: Fração de volume das partículas médias de água numa tubulação de escoamento de petróleo

Estes resultados mostram que há variação no comportamento da distribuição das frações estudadas com o

I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis

III Workshop de Engenharia de Petróleo

aumento do tamanho das partículas de água, como era esperado.

4. CONCLUSÕES

As simulações realizadas evidenciaram deposição de partículas, frações mássicas e volumétricas no transporte de petróleo em solução com água através de tubulações do tipo "L", o que pode contribuir em futuros estudos tecnológicos e científicos.

simulação computacional **ANSYS CFX®** software 14.0, desenvolvida no presente estudo, mostrou-se adequada para descrever o fenômeno de forma realística e com ampla gama de detalhes, adequadas a natureza física do problema, comprovando que o CFD se constitui em uma ferramenta valiosa para estudos fenomenológicos de sistemas de fluidos imiscíveis.

5. REFERÊNCIAS BIBLIOGRÁFICAS

Buriti, C. J. de O.; Neto, S. R. de F.; Lima, A. G. B.; Farias, F. P. M. *Desempenho e avaliação numérica do processo de separação água/óleo pesado e ultraviscoso no interior de um hidrociclone.* 5º congresso brasileiro de P&D em petróleo e gás.

Bordalo, S. N.; Oliveira, R. de C. *Escoamento bifásico óleo-água com precipitação de parafinas em dutos submarinos de produção de petróleo.* 4º PDPetro.

Campos, J. C.; Nóbrega, R.; Sant'Anna Jr., G. L. *Tratamento de água de produção de petróleo em reator biológico do tipo "Air-Lift"*. Disponível em:

<http://www.bvsde.paho.org/bvsaidis/ares idua/brasil/ii-001.pdf>. Data de acesso: 18 de fevereiro de 2013.

Chen, F., Yu, S.C.M., & Lai, A.C.K. (2006). *Modeling Particle distribution and deposition in indoor environments with a new drift-flux model*. Atmospheric Environment, 40, 357–367.

Parker S., Nally, J., Foat, T., Preston, Steve. *Refinement and testing of the drift-flux model for indoor aerosol dispersion and deposition modelling* Journal of Aerosol Science, 2010.

Silva, C. R. R. Água Produzida na extração de Petróleo. 27p. Monografia (Especialização em gerenciamento e tecnologias ambientais na industria), Departamento de hidráulica e saneamento. Escola Politécnica da UFBA.